首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of Optically Active Natural Carotenoids and Structurally Related Compounds. VIII. Synthesis of (3S,3′S)-7,8,7′,8′-Tetradehydroastaxanthin and (3S,3′S)-7,8-Didehydroastaxanthin (Asterinic Acid) The synthesis of all-trans-(3S,3′S)-3,3′-dihydroxy-7,8, 7′,8′-tetradehydro-β, β-carotene-4,4′-dione ( 1 ), of all-trans-(3S,3′S)-3,3′-dihydroxy-7, 8-didehydro-β,β-carotene-4,4′-dione ( 2 ) (asterinic acid = mixture of 1 and 2 ), and of their 9,9′-di-cis- and 9-cis-isomers is reported starting from (4′S)(2E)-5-(4′-hydroxy-2′, 6′,6′-trimethyl-3′-oxo-l′-cyclohexenyl)-3-methyl-2-penten-4-ynal ( 8 ). The absolute configuration (3S,3′S) for both components 1 and 2 of asterinic acid ex Asterias rubens is confirmed on the basis of spectroscopic and direct comparison.  相似文献   

2.
The Friedel-Crafts mono and double acylations of trans-μ-[(1RS,2RS,3SR,5RS,6SR,7SR)-C,2,3,C-η:C,6,7,C-η-(2,3,6,7-tetramethylidenebicyclo[3.2.1]octane)]bis(tricarbonyliron) ( 4 ) are highly stereoselective and yield trans-μ-{(1RS,2RS,3SR,5RS,6SR,7RS)-C,2,3,C-η :C,6,7,C-η-[(Z)-1-(3,6,7-trimethylidenebicyclo[3.2.1]-oct-2-ylidene)-2-propanone]}bis(tricarbonyliron) ( 5 ) and trans-μ-{(1RS,2RS,3SR,5RS,6SR,7SR)-C,2,3,C-η :C,6,7,C-η-[(Z,Z)-1,1′-(3,7-dimethylidenebicyclo [3.2.1] octane-2,6-diylidene)di(2-propanone)]}bis(tricarbonyliron) ( 6 ) whose structure has been established by single-crystal X-ray diffraction.  相似文献   

3.
Technical Procedures for the Synthesis of Carotenoids and Related Compounds from 6-Oxo-isophorone. IV. A Novel Concept for the Synthesis of (3RS, 3′RS)-, (3S, 3′S)- and (3R, 3′R)-9,9′-dicis-7,8,7′,8′-Tetradehydroastaxanthin Starting from readily available intermediates of the synthesis of astaxanthin, (3RS, 3′RS)-, (3R, 3′R)- and (3S, 3′S)-9,9′-di-cis-tetradehydroastaxanthin ( 1, 1a and 1b , resp.) were synthesized, 1 and 1b for the first time. Key features of this concept are: a) use of the unprotected, acetylenic phosphonium salts 8–12 , b) a two-step synthesis with 47% overall yield, and c) good chemical and optical purity of the end products.  相似文献   

4.
Absolute Configuration of Loroxanthin (=(3R, 3′R, 6′R)-β, ?-Carotene-3, 19, 3′-triol) ‘Loroxanthin’, isolated from Chlorella vulgaris, was separated by HPLC. methods in two major isomers, a mono-cis-loroxanthin and the all-trans-form. Solutions of the pure isomers easily set up again a mixture of the cis/trans-isomers. Extensive 1H-NMR. spectral measurements at 400 MHz allowed to establish the 3′, 6′-trans-configuration at the ?-end group in both isomers and the (9E)-configuration in the mono-cis-isomer. The absolute configurations at C(3) and C(6′) were deduced from CD. correlations with synthetic (9Z, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 5 ) and (9E, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 6 ), respectively. Thus, all-trans-loroxanthin ( 3 ) is (9Z, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol and its predominant mono-cis-isomer is (9E, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol ( 4 ). Cooccurrence in the same organism and identical chirality at all centers suggest that loroxanthin is biosynthesized from lutein ( 2 ).  相似文献   

5.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

6.
The Friedel-Crafts monoacylation of trans-η-[(1RS,2RS,4SR,5SR,6RS,7SR,8SR)-C,5,6,C-η:C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 5 ) is highly stereoselective and yields trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,6-η,oxo-σ:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 8 ) which equilibrates with the trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,5,6,C-η:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 9 ) on heating. Optically pure (–)- 9 has been prepared from the corresponding optically pure alcohol (+)- 4 . The structure and absolute configuration of (–)- 9 was established by single-crystal X-ray diffraction.  相似文献   

7.
2-(1′-cis,3′-cis-)- and 2-(1′-cis,3′-trans-Penta-1′,3′-dienyl)-phenol (cis, cis- 4 and cis, trans- 4 , cf. scheme 1) rearrange thermally at 85–110° via [1,7 a] hydrogen shifts to yield the o-quinomethide 2 (R ? CH3) which rapidly cyclises to give 2-ethyl-2H-chromene ( 7 ). The trans formation of cis, cis- and cis, trans- 4 into 7 is accompanied by a thermal cis, trans isomerisation of the 3′ double bond in 4. The isomerisation indicates that [1,7 a] hydrogen shifts in 2 compete with the electrocyclic ring closure of 2 . The isomeric phenols, trans, trans- and trans, cis- 4 , are stable at 85–110° but at 190° rearrange also to form 7 . This rearrangement is induced by a thermal cis, trans isomerisation of the 1′ double bond which occurs via [1, 5s] hydrogen shifts. Deuterium labelling experiments show that the chromene 7 is in equilibrium with the o-quinomethide 2 (R ? CH3), at 210°. Thus, when 2-benzyl-2H-chromene ( 9 ) or 2-(1′-trans,3′-trans,-4′-phenyl-buta1′,3′-dienyl)-phenol (trans, trans- 6 ) is heated in diglyme solution at >200°, an equilibrium mixture of both compounds (~ 55% 9 and 45% 6 ) is obtained.  相似文献   

8.
Optically Active 4,5-Epoxy-4,5-dihydro-α-ionones; Synthesis of the Stereoisomeric 4,5:4′,5′-Diepoxy-4,5,4′,5′-tetrahydro-?,?-carotenes and the Steric Course of their Hydrolysis We prove that epoxidation with peracid of α-ionone, contrary to a recently published statement, predominantly leads to the cis-epoxide. Acid hydrolysis affords a single 4,5-glycol whose structure, established by an X-ray analysis, shows that oxirane opening occurred with inversion at the least substituted position (C(4)). Stable cis-and trans-epoxides are prepared by epoxidation of the C15-phosphonates derived from α-ionone. Both the racemic and optically active form are used for the synthesis of the 4,5:4′,5′-diepoxy-4,5,4′,5′-tetrahydro-?,?-carotenes having the following configuration in the end groups: meso-cis/cis, meso-trans/trans, rac-cis/trans, rac- and (6R, 6′ R)-cis/cis, rac- and (6R, 6′R)-trans/trans, rac- and (6R, 6′R)-cis/trans, and (6R, 6′ R)-cis/?. Acid hydrolysis of the cis/cis-epoxycarotenoids under relatively strong conditions occurs again with inversion at C(4)/C(4′) in case of the cis/cis-epoxycarotenoids, but at C(5)/C(5′) in case of the trans/trans-epoxycarotenoids. An independent synthesis of this 4,5,4′,5′-tetrahydro-?,?-carotene-4,5,4′,5′-tetrol is presented. The irregular results of the oxirane hydrolysis are explained by assumption of neighbouring effects of the lateral chain. 400-Mz-1H-NMR data are given for each of the stereoisomeric sets. In the visible range of the CD spectra, the (6R, 6R′)-epoxycarotenoids compared with (6R, 6R′)-?,?-carotene exhibit an inversion of the Cotton effects.  相似文献   

9.
Preparations of dimethyl (1RS,2SR,4RS,5SR,6SR,7RS)- and dimethyl (1 RS,2SR,4RS,5SR,6RS,7SR)-8-oxa-3-azatricyclo[3;2.1.024] octane-6,7-dicarboxylate 15 and 18 , resp.) and of their N-(tert-butyloxy)carbonyl ( 14 , 17 ) and V-benzoyl ( 16 , 19 ) derivatives are described. While treatment with nucleophilic acids (HCl, HBr. AcOH) of the exo, exo-diesters 14 and 16 gave the corresponding products 23–27 of aziridine trans -addition, the exo, endo -diesters 17 and 19 led to the corresponding amino-lactones 63 (methyl (1RS,2RS,3SR,6RS,7SR,9RS)-2-{[(tert-butyloxy)carbonyl] amino}-5-oxo-4,8-dioxatricyclo[4.2.1.0 37] nonane-9-carboxylate) and 64 (methyl (1RS,2RS,3SR,6RS,7SR,9SR)-2-(benzoylamino)-5-oxo-4,8-dioxatricyclo[4.2.1.0 3′7] (nonane-9-carboxylate). Under non-nucleophilic acidic conditions, the N-benzoylaziridine 16 was rearranged quantitatively into dimethyl (1RS,2SR,26SR,67SR,7SR,8SR,9SR)-4-phenyl-5,10-dioxa-3-azatricyclo[4.3.1.02′7] dec-3-ene-8,9-dicarboxylate( 31 ), and 19 into dimethyl (1RS,2SR,26SR,67SR,7SR,8SR,9SR)-4-phenyl-3,10-dioxa-5-azatricyclo [5.2.1.02′6] dec-4-ene-8,9-di-carboxylate ( 65 ). Possible mechanisms of these highly selective reactions and rearrangements are discussed.  相似文献   

10.
(1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐1,3,5‐triphenylcyclohexan‐1‐ol or (4‐hydroxy‐2,4,6‐triphenylcyclohexane‐1,3‐diyl)bis(phenylmethanone), C38H32O3, (1), is formed as a by‐product in the NaOH‐catalyzed synthesis of 1,3,5‐triphenylpentane‐1,5‐dione from acetophenone and benzaldehyde. Single crystals of the chloroform hemisolvate, C38H32O3·0.5CHCl3, were grown from chloroform. The structure has triclinic (P) symmetry. One diastereomer [as a pair of (1RS,2SR,3RS,4SR,5RS)‐enantiomers] of (1) has been found in the crystal structure and confirmed by NMR studies. The dichoromethane hemisolvate has been reported previously [Zhang et al. (2007). Acta Cryst. E 63 , o4652]. (1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐3,5‐bis(2‐methoxyphenyl)‐1‐phenylcyclohexan‐1‐ol or [4‐hydroxy‐2,6‐bis(2‐methoxyphenyl)‐4‐phenylcyclohexane‐1,3‐diyl]bis(phenylmethanone), C40H36O5, (2), is also formed as a by‐product, under the same conditions, from acetophenone and 2‐methoxybenzaldehyde. Crystals of (2) have been grown from chloroform. The structure has orthorhombic (Pca21) symmetry. A diastereomer of (2) possesses the same configuration as (1). In both structures, the cyclohexane ring adopts a chair conformation with all bulky groups (benzoyl, phenyl and 2‐methoxyphenyl) in equatorial positions. The molecules of (1) and (2) both display one intramolecular O—H...O hydrogen bond.  相似文献   

11.
The Diastereomeric Aurochromes: Their Synthesis, Analysis and Chiroptical Properties (all-E)-Aurochrome (5,8:5′,8′-diepoxy-5,8,5′,8′-tetrahydro-β,β-carotene; 1 ) has two pairs of constitutionally identical chiral centres and, therefore, is expected to exist in four pairs of enantiomers and two meso-forms. Using starting materials with well-defined configuration, we performed the syntheses of the following pure aurochromes: (5R,8R,5′R,8′R)-aurochrome ( 2 ) and its racemate, Meso-(5R,8R,5′S,8′S)-aurochrome ( 3 ), (5 R,8 S,5′ R,8′ S)-aurochrome ( 4 ) and its racemate, meso-(5R,8S,5′S,8′R)-aurochrome ( 5 ), (5R,8R,5′R,8′S)-aurochrome ( 6 ) and its racemate. The (5RS,8RS,5′SR,8′RS)-aurochrome ( 7 ) was detected chromatographically, using a HPLC system that allows clean separation of the four racemic- (or optically active) and the two meso-aurochromes. The optically active autochromes 2 and 4 exhibit non-conservative CD spectra with strong Cotton effects of opposite but not mirror-like tracings. Solutions of aurochromes in CHCl3, in the presence of HCl, undergo epimerization at C(8). Those epimers with CH3 trans to C(9) slightly predominate under equilibrium conditions. Deprotonation of the phosphonate (±)- 14 with strong base causes isomerization at the terminal oxirane into a dihydrofuran. This reaction allowed convenient syntheses of the diastereoisomeric aurochromes (±)- 2, 3 , (±)- 4, 5 , (±)- 6 , and (±)- 7 and of (5RS, 8RS)- and (5RS, 8SR)-12′-apo-aurochrome-12′-als ( 21 and 22 , respectively).  相似文献   

12.
In the presence of Me3Al, 1-cyanovinyl acetate added to 2,2′-ethylidenebis[3,5-dimethylfuran] ( 1 ) to give a 20:10:1:1 mixture of mono-adducts 4,5,6 , and 7 resulting from the same regiocontrol (‘para’ orienting effect of the 5-methyl substituent in 1 ). The additions of a second equiv. of dienophile to 4–7 were very slow reactions. The major mono-adducts 4 (solid) and 5 (liquid) have 2-exo-carbonitrile groups. The molecular structure of 4 (1RS,1′RS,2SR,4SR)-2-exo-cyano-4-[1-(3,5-dimethylfuran-2-yl)ethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate) was determined by X-ray single-crystal radiocrystallography. Mono-adducts 4 and 5 were saponified into the corresponding 7-oxanorbornenones 8 and 9 which were converted with high stereoselectivity into (1RS,1′SR,4RS,5RS,6RS)-4-[1-(3,5-dimethyl furan-2-yl)ethyl]-6-exo-methoxy-1,5-endo-dimethyl-7-oxabicyclo [2.2.1]heptan-2-one dimethyl acetal ( 12 ) and its (1′RS-stereoisomer 12a , respectively. Acetal hydrolysis of 12a followed by treatment with (t-Bu)Me2SiOSO2CF3 led to silylation and pinacol rearrangement with the formation of (1RS,1′RS,5RS,6RS)-4-[(tert-butyl)dimethy lsilyloxy]-1-(3,5-dimethylfuran-2-yl)ethyl]-5-methoxy-6-methyl-3-methylidene- 2-oxabicyclo[2.2.1]heptane ( 16 ). In the presence of Me3Al, dimethyl acetylenedicarboxylate added to 12 giving a major adduct 19 which was hydroborated and oxidized into (1RS,1′RS,2″RS,3″RS,4SR,4″RS,5 SR,6SR)-dimethyl 5-exo-hydroxy-4,6-endo-dimethyl-1-[1-(3-exo,5,5-trimeth oxy-2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-2-yl)ethyl]-7-oxabicyclo [2.2.1]hept-2-ene-2,3-dicarboxylate ( 20 ). Acetylation of alcohol 20 followed by C?C bond cleavage afforded (1′RS,1″SR,2RS,2′″SR,3RS, 3″SR,4RS,4″SR,5RS)-dimethyl {3-acetoxy-2,3,4,5-tetrahydro-2,4-dimethyl-5-[1-(3-exo,5,5-trimethoxy ?2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-1-yl)-ethyl]furan-2,5-diyl} bis[glyoxylate] ( 24 ).  相似文献   

13.
( all-E)-12′-Apozeanthinol, Persicaxanthine, and Persicachromes Reexamination of the so-called ‘persicaxanthins’ and ‘persicachromes’, the fluorescent and polar C25-apocarotenols from the flesh of cling peaches, led to the identification of the following components: (3R)-12′-apo-β-carotene-3,12′-diol ( 3 ), (3S,5R,8R, all-E)- and (3S,5R,8S,all-E)-5,8-epoxy-5,8-dihydro-12′-apo-β-carotene-3,12′-diols (4 and 5, resp.), (3S,5R,6S,all-E)-5,6-epoxy-5,6-dihydro-l2′-apo-β-carotene-3,12′-diol =persicaxanthin; ( 6 ), (3S,5R,6S,9Z,13′Z)-5,6-dihydro-12′apo-β-carotene-3,12′-diol ( 7 ; probable structure), (3S,5R,6S,15Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 8 ), and (3S,5R,6S,13Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 9 ). The (Z)-isomers 7 – 9 are very labile and, after HPLC separation, isomerized predominantly to the (all-E)-isomer 6 .  相似文献   

14.
Homochiral Diels-Alder cyclodimerization of (±)-6-ethenyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol ( 1 ) followed by oxidation gives (1RS,4RS,4aSR,4bSR,5RS,8RS,8aRS)-8a-ethenyl-1,3,4,4a,4b,5,6,8,8a,9-decahydro-1,4:5,8-diepoxyphenanthrene-2,7-dione ( 18 ). Selective hydrogenation followed by epoxidation produced (1RS,4RS,4aRS,5aRS,6aRS,7RS,10RS,10aSR,10bRS)-6a-ethyl-1,4,5a,6,6a,7,9,10,10a,10b-decahydro-1,4:7,10-diepoxyphenanthro[8a,9-b]oxirene-3,8-dione ( 21 ), which was solvolyzed (Me3SiOSO2CF3, Piv2O) with concomitant pinacol rearrangement involving an acyl-group migration to give a 6-oxo-7-oxabicyclo[2.2.1]hept-2-yl cation intermediate, which finally generated (1RS,3SR,3aRS,4SR,5aRS,6RS,9RS,9aSR,9bSR)-5a-ethyl-1,4,5,5a,6,7,8,9,9a,9b-decahydro-7,10-dioxo-3H-6,9-epoxy-1,3a-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 24 ). Photo-reductive 7-oxa bridge opening of 24 , followed by water elimination and silylation, provided (1RS,3SR,3aRS,4SR,5aSR,9aSR,9bSR)-7-{[(tert-butyl)dimethylsilyl]oxy}-5a-ethyl-1,4,5,5a,9a,9b-hexahydro-10-oxo-3H-1,3-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 34 ). Reduction of 34 with NaBH4 in MeOH followed by desilylation and alcohol protection produced (1RS,3RS,3aRS,4SR,5aSR,9aSR,9bSR)-5a-ethyl-2,3,3a,4,5,5a,6,7,9a,9b-decahydro-1,3-bis(methoxymethoxy)-3a-[(methoxymethoxy)methyl]-7-oxo-1H-benz[e]inden-4-yl 2,2-dimethylpropanoate ( 5 ), a polyoxy-substituted decahydro-1H-benz[e]indene derivative with cis-transoid-trans junction for the two cyclohexane and the cyclopentane rings bearing an angular 3a-(oxymethyl) substituent.  相似文献   

15.
Synthesis of Enantiomerically Pure Apoviolaxanthinoic Acids, Apoviolaxanthinols, and Apoviolaxanthinals (Including Persicaxanthin, Sinensiaxanthin, and β-Citraurin Epoxide) and of their Furanoid Rearrangement Products Starting from (1′S,2′R,4′S,2E,4E)-5-(1′,2′-epoxy-4′-hydroxy-2′,6′,6′-trimethylcyclohexy1)-3-methy1-2,4-pentadienal ( 3 ), a recently described synthon [6], a full range of C20-, C25-, C27-, and C30-polyenic acids, alcohols, and aldehydes and their (8R)- and (8S)-diastereoisomeric furanoid rearrangement products was prepared. The synthetic C25-alcohols proved to be identical with persicaxanthin (= 12′-apoviolaxanthin-12′-ol) and perisicachromes (= 12′-apoauroxanthin-12′-ols) and the C27-alcohols analogously with sinensiaxanthin and sinensiachromes. A correlation between the sign of the Cotton effects in the CD spectra of 5,6-and 5,8-epoxides and their configuration at C(6) and C(8), respectively, was established.  相似文献   

16.
Flash-vacuum thermolysis of the four diastereoisomeric 5,6-epoxy-5,6-dihydro-caryophyllenes 1–4 at 500–550°/0.1–0.7 Torr leads to the hitherto unreported enantiomers of (6RS,7RS)- and (6RS,7SR)-6,7-epoxy-6,7-dihydro-β-farnesenes ((±)- 5 and (±)- 6 , resp.). In particular, (+)- 5 is formed in 45% yield (ca. 90% ee) and is, thus, an attractive chiral building block for natural-product synthesis.  相似文献   

17.
Acidic condensation of 2,4-dimethylfuran with acetaldehyde provided 2,2′-ethylidenebis[3,5-dimethylfuran] ( 7 ) which added 1 equiv. of methyl bromopropynoate to give a major adduct 8 . Regio- and stereoselective hydroboration of the latter 7-oxanorbornadiene derivative followed by alcohol protection and methanolysis of its β-bromoacrylate moiety gave (1RS,2RS,4RS,5SR,6SR,1′RS)-methyl 4-[1′-(3″,5″-dimethylfuran-2″-yl)ethyl]-3,3-dimethoxy-6-exo-[(2-methoxy)ethoxy]-1,5-endo-dimethyl-7-oxabicyclo[2.2.1]heptane-2-endo-carboxylate ( 24 ) (Schemes 2 and 3). Reduction of 24 with LiAlH4, followed by H2O and MeOH elimination gave the 3-methyl-idene-7-oxanorbornan-2-one derivative 26 which underwent 7-oxa ring opening through a SN2′ type of reaction with Me2CuLi (Scheme 4). Stereoselective hydrogenation and ketone reduction provided (1RS, 2SR,3RS,4RS,5RS,6RS,1′SR)-1- [1″-(3 ″,5″-dimethylfuran-2″-yl)]-c-3-ethyl-c-5-[(2-methoxyethoxy)m e-c-ethyl-c-c-5-(2-methoxyethoxy)methoxy]-t-4,t-6-dimethyl-cyclohexane-r-1,c-2-diol ( 32 ), the oxidative cleavage of which with Pb(OAc)4 generated a 6-oxo-aldehyde 33 (Schemes 4 and 5). Chemoselective protection of 33 and chemo- and stereoselective reductions generated (2RS,3RS,4SR,5SR,6SR,7RS)-7-(3′,5″-dimethylfuran-2′-yl)-2-ethyl-6-hydroxy-4-[(2-methoxyethoxy)methoxy]-3,5-dimethyloct-1-yl pivaloate ( 36 ) and its 4-hydroxy 6-epimer 40 (12 and 13 steps, resp., from adduct 8 ; Scheme 5). Oxidation of the furan ring of 36 led to a (2RS,3SR,4RS,5SR,6RS,7RS)-7-ethyl-3,5,8-trihydroxy-2,4,6-trimethyl-octanoic acid derivative 44 , a polypropionate fragment with six contiguous stereogenic centres (Scheme 6).  相似文献   

18.
Photochemical Reaction of Optically Active 2-(1′-Methylallyl)anilines with Methanol It is shown that (?)-(S)-2-(1′-methylallyl)aniline ((?)-(S)- 4 ) on irradiation in methanol yields (?)-(2S, 3R)-2, 3-dimethylindoline ((?)-trans- 8 ), (?)-(1′R, 2′R)-2-(2′-methoxy-1′-methylpropyl)aniline ((?)-erythro- 9 ) as well as racemic (1′RS, 2′SR)-2-(2′-methoxy-1′-methylpropyl) aniline ((±)-threo- 9 ) in 27.1, 36.4 and 15.7% yield, respectively (see Scheme 3). By deamination and chemical correlation with (+)-(2R, 3R)-3-phenyl-2-butanol ((+)-erythro- 13 ; see Scheme 4) it was found that (?)-erythro- 9 has the same absolute configuration and optical purity as the starting material (?)-(S)- 4 . Comparable results are obtained when (?)-(S)-N-methyl-2-(1′-methylallyl)aniline ((?)-(S)- 7 ) is irradiated in methanol, i.e. the optically active indoline (+)-trans- 10 and the methanol addition product (?)-erythro- 11 along with its racemic threo-isomer are formed (cf. Scheme 3). These findings demonstrate that the methanol addition products arise from stereospecific, methanol-induced ring opening of intermediate, chiral trans, -(→(?)-erythro-compounds) and achiral cis-spiro [2.5]octa-4,6-dien-8-imines (→(±)-threo-compounds; see Schemes 1 and 2).  相似文献   

19.
1,2-Epoxycarotenoids: Synthesis, 1H-NMR and CD Studies of (S)-1,2-Epoxy-1,2-dihydrolycopene and (S)-1′,2′-Epoxy-1′, 2′ -dihydro-γ-carotene The synthesis of (S)-1,2-epoxy-1,2-dihydrolycopene ((S)- 1 ) and (S)-1′, 2′ -epoxy- 1′, 2′ -dihydro-γ-carotene ((S)- 2 ) are described. The CD spectra of the (all-E)-isomers and of the isomers (7Z, S)- 1 and (7′Z, S)- 2 are discussed. The comparison of the CD spectra of the synthetic (S)- 1 and the compound isolated from the tomatoes proves the (S)-configuration of the natural product.  相似文献   

20.
Starting from (R)-3-hydroxybutyric acid ((R)- 10 ) the C45- and C50-carotenoids (all-E,2S,2′S)-bacterioruberm ( 1 ), (all-E,2S,2′S)-monoanhydrobacterioruberin ( 2 ), (all-E,2S,2′S)-bisanhydrobacterioruberin ( 3 ), (all-E,2R,2′R)-3,4,3′,4′-tetrahydrobisanhydrobacterioruberin ( 5 ), and (all-E,S)-2-isopentenyl-3,4-dehydrorhodopin ( 6 ) were synthesized. By comparison of the chiroptical data of the natural and the synthetic compounds, the (2S)- and (2′S)-configuration of the natural products 1–3 and 6 was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号