首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《European Polymer Journal》1987,23(11):897-903
New polyamides containing thianthrene tetraoxide were synthesized from 2,7-dichloroformylthianthrene-5,5′,10,10′-tetraoxide (A) and various diamines by the low temperature solution polycondensation technique. The resulting polyamides were characterized by i.r. and 1H-NMR spectra and elemental analysis. The polyamides had inherent viscosities of 0.56–1.21 dl/g in DMA at 30°. All the polymers dissolved readily at room temperature in polar aprotic solvents. Density, crystallinity and thermal stability of these polyamides have been determined. In order to characterize the polymers, a model compound was also prepared from A and p-toluidine.  相似文献   

2.
A new ether‐bridged aromatic dicarboxylic acid, 2′,5′‐bis(4‐carboxyphenoxy)‐p‐terphenyl ( 3 ), was synthesized by the aromatic fluoro‐displacement reaction of p‐fluorobenzonitrile with 2′,5′‐dihydroxy‐p‐terphenyl in the presence of potassium carbonate, followed by alkaline hydrolysis. A set of new aromatic polyamides containing ether and laterally attached p‐terphenyl units was synthesized by the direct phosphorylation polycondensation of diacid 3 with various aromatic diamines. The polymers were produced with high yields and moderately high inherent viscosities (0.44–0.79 dL/g). The polyamides derived from 3 and rigid diamines, such as p‐phenylenediamine and benzidine, and a structurally analogous diamine, 2′,5′‐bis(4‐aminophenoxy)‐p‐terphenyl, were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and could afford flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 91–108 MPa, elongations to break of 6–17%, and initial moduli of 1.95–2.43 GPa. These polyamides showed glass‐transition temperatures between 193 and 252 °C. Most of the polymers did not show significant weight loss before 450 °C, as revealed by thermogravimetric analysis in nitrogen or in air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4056–4062, 2004  相似文献   

3.
A series of novel aromatic diamines ( 2 – 4 ) containing the alkyl‐, aryl, or chloro‐substituted group of phthalazinone segments were synthesized via two synthetic steps starting from 4‐(3‐R‐4‐hydroxyphenyl)‐2,3‐phthalazinone‐1 (R = Ph, CH3, Cl). Three series of aromatic polyamides containing phthalazinone moieties were prepared through diamines 2 – 4 reacting with different aromatic dicarboxylic acids via a direct Yamazaki–Higashi phosphorylation polycondensation reaction. The resulting aromatic polyamides had inherent viscosities in the range of 0.40–0.76 dL/g. The thermal property of the polyamides was examined with DSC and thermogravimetric analysis. The glass‐transition temperatures of these polyamides ranged from 298 to 340 °C. The 10% mass‐loss temperature was above 405 °C under nitrogen. Structures of monomers 2 – 4 and the polymers were confirmed by Fourier transform infrared spectroscopy, 1H NMR, and mass spectrometry. Good solubility of these polymers in polar solvents such as N‐methylpyrrolidone, dimethylformamide, dimethylacetamide (DMAc), and m‐cresol was observed, and tough, flexible films were obtained from the polymer's DMAc solutions. The effect of the substituted group on the physical property of polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2026–2030, 2004  相似文献   

4.
Silicon-containing polyamides and polyesters of a new type have been synthesized. They contain phenoxasilin rings with double-stranded structure. The polymers were synthesized by the interfacial polycondensation of 2,8-dichloroformyl-10,10-diphenylphenoxasilin with diamines and bisphenols, and were obtained in nearly quantitative yields. Their reduced viscosities were in the range of 0.53–1.47 dl g?1 m dimethylformamide (DMF), m-cresol or chloroform. Some of the polyamides were soluble in polar aprotic solvents such as DMF and N-methyl-2-pyrrolidone (NMP) and the polyesters had good solubility in chloroform, phenol-sym tetrachloroethane (60:40 by wt %) and acidic solvents (m-cresol and nitrobenzene). The polymers hardly dissolved in cone. H2SO4 and some of them coloured in it. Only the polyester having sulphide bonds was soluble in benzene in addition to the above organic solvents. These polymers hardly degraded below 400° except for the polyamides derived from aliphatic diamines. The polymers from aliphatic diamines melted at 290–325°; the other polyamides and the polyesters decomposed without melting.  相似文献   

5.
A series of polyamides which contained thianthrene, phenoxatiin, and dibenzo-p-dioxin units was synthesized from tricyclic fused-ring diamines and aromatic diacid chlorides by solution polycondensations at a low temperature. The amorphous polyisophthalamides were highly soluble in polar organic solvents, whereas some of the polyterephthalamides with a fair degree of crystallinity were insoluble. The solubility of the series of polyamides increased in the order of the dibenzo-p-dioxin-containing polymers < phenoxatiin-containing polymers < thianthrene-containing polymers. The thermal stability increased in the reverse order and the dibenzo-p-dioxinpolyamides were more thermostable than the corresponding open-chain polymers with diphenyl ether linkages. The polyamides derived from 2,8-oriented tricyclic diamines showed somewhat lower glass transition temperatures than those from 2,7-oriented diamines.  相似文献   

6.
A set of new aromatic polyamides containing ether and benzonorbornane units were synthesized by the direct phosphorylation polycondensation of 3,6‐bis(4‐carboxyphenoxy)benzonorbornane with various aromatic diamines. The polymers were produced in high yields and moderate to high inherent viscosities (0.64–1.70 dL/g). The polyamides derived from rigid diamines such as p‐phenylenediamine and benzidine were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and afforded flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 95–101 MPa, elongations at break of 13–25%, and initial moduli of 1.97–2.33 GPa. The amorphous polyamides showed glass‐transition temperatures between 176 and 212 °C (by differential scanning calorimetry) and softening temperatures between 194 and 213 °C (by thermomechanical analysis). Most of the polymers did not show significant weight loss before 450 °C in nitrogen or in air. Some properties of these polyamides were also compared with those of homologous counterparts without the pendent norbornane groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 947–957, 2002  相似文献   

7.
Novel phenylated polyamides having inherent viscosities in the range of 0.2–0.4 were prepared by the ring-opening polyaddition of 2,2′-p-phenylenebis(4,4-diphenyl-5-oxazolone) with aliphatic diamines in polar aprotic solvents. Similarly, unsubstituted polyamides were obtained from 2,2′-p-phenylenebis-5-oxazolone and both aliphatic and aromatic diamines. The phenylated polyamides were highly soluble in a wide range of solvents including tetrahydrofuran and dioxane, while the unsubstituted polymers showed limited solubility in the solvents. No marked differences in thermal stability between the phenylated and unsubstituted polyamides were noted, and all the polyamides began to decompose at around 250°C in both air and nitrogen.  相似文献   

8.
Aliphatic–aromatic polyamides were synthesized by the palladium-catalyzed polycondensation of aliphatic diamines, aromatic dibromides, and carbon monoxide. The effects of variables, such as the kind and amount of base, reaction temperature, and the kind of palladium catalyst were investigated in detail on the reaction of hexamethylenediamine and bis(4-bromophenyl) ether with carbon monoxide. Inherent viscosities of the polyamides were between 0.13 and 1.21 dL/g and varied markedly with the structure of the diamine component. Solubility of the polyamides decreased with increase of chain length of aliphatic diamines, and the polyamides derived from p-dibromobenzene was insoluble in organic solvents except for m-cresol. Polyamides obtained from primary aliphatic diamines began to decompose at 210–250°C in air due to decomposition of the aliphatic chain.  相似文献   

9.
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
A series of novel organosoluble polyamides (PAs) bearing different functional groups such as flexible ether, substituted imidazole, and xanthene rings and electron-withdrawing CF3 groups were synthesized from diamines and various dicarboxylic acids. The structures of diamines and PAs were fully characterized by elemental analysis, Fourier transform infrared spectroscopy, and proton nuclear magnetic resonance spectroscopy. The PAs showed good solubility in aprotic and polar organic solvents, with high thermal stability exhibiting the glass transition temperatures (Tgs) and 10% weight loss temperatures (T10%) in the range of 184–277°C and 410–480°C in N2 atmosphere, respectively. These polymers showed fluorescence emission upon irradiation with UV light. Diamine compounds and two of synthesized polymers were also screened for antibacterial activity against gram-positive and gram-negative bacteria, and the obtained results for all four combinations showed good inhibition. Extraction capability for heavy metal ions such as Cr3+, Pb2+, Hg2+, Cd2+, and Co2+ from aqueous solutions was also tested at 25°C and pH 7–8.  相似文献   

11.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

12.
A new aromatic dicarboxylic acid, 1,4-bis (p-carboxyphenoxy)naphthyl ( 3 ), was synthesized by the reaction of p-fluorobenzonitrile with 1,4-naphthalenediol, followed by hydrolysis. Aromatic polyamides having inherent viscosities of 1.27–2.22 dL/g were prepared by the triphenyl phosphite activated polycondensation of diacid 3 with various aromatic diamines. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including N,N-dimethyl-acetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and m-cresol. Transparent, tough, and flexible films of these polymers could be cast from the DMAc or NMP solutions. The cast films had tensile strengths ranging from 64–104 MPa, elongations-at-break from 6 to 10%, and initial moduli from 1.52 to 2.14 GPa. These polyamides had glass transition temperatures in the range of 195 to 240°C. Almost all polymers were thermally stable up to 400°C, with 10% weight loss being recorded above 480°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2273–2280, 1997  相似文献   

13.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

14.
4,4′-(2,7-Naphthalenedioxy)dibenzoic acid, a new aromatic dicarboxylic acid monomer, was prepared starting from 2,7-dihydroxynaphthalene and p-fluorobenzonitrile in three steps. Using triphenyl phosphite (TPP) and pyridine as condensing agents, a series of novel aromatic polyamides were synthesized by the direct polycondensation of the diacid monomer and aromatic diamines in N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities ranging from 0.48 to 0.67 dL/g. Most of these polyamides were readily soluble in polar solvents, such as NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films were cast from their DMAc solutions. They had tensile strengths of 65–70 MPa, elongations to break of 5–7%, and initial moduli of 1.4–1.6 GPa. Most of these polymers proved to be amorphous, with glass transition temperatures in the range between 143–227°C. Thermogravimetric analysis (TG) showed that all the polyamides were stable up to 450°C in both air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1469–1478, 1997  相似文献   

15.
A series of new polyamides were synthesized by direct polycondensation of the 4,9-diamantane dicarboxylic acid ( I ) with various aromatic diamines in N-methyl-2-pyrrolidone (NMP) containing lithium chloride. The polyamides had inherent viscosities of 0.56–1.85 dL/g. Dynamic mechanical analysis revealed the polymers IIIa–IIId to have main melting transitions at 403, 431, 423, and 452°C, respectively. Moreover, these polymers were quite stable at high temperatures and maintained good mechanical properties (G′ = ca. 108 Pa) up to temperatures close to the main transition well above 400°C. Although the polyamides contained rigid 4,9-diamantyl moieties in the main chain, the tensile properties of the polyamides showed toughness. Elongations of polyamides IIIa and IIIb reached 38.3 and 31.7%, respectively, before breaking. A glass transition was not observed. However, polyamide IIIc shows a melting transition with a sharp endothermic peak at 423°C by DSC measurement. Additionally, the introduction of 4,9-diamantyl units into the polyamide backbone resulted in polyamides with high thermal stability and good mechanical properties. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The preparation of polyamides from derivatives of optically active biphenic acid is described. The diacid chlorides chosen were 2,2′-dinitro-6,6′-dimethylbiphenyl-4,4′-dicarbonyl chloride and 2,2′-dichloro-6,6′-dimethylbiphenyl-4,4′-dicarbonyl chloride, the diamines were phenyldiamines (o-, m-, p-) piperazine, trans-2,5-dimethylpiperazine, and 1,2-piperaazolidine. Polymerization was carried out by the method of interfacial polycondensation. The polymers of aromatic diamines were insoluble in common organic solvents but soluble in dimethylformamide containing 5% lithium chloride, triesters of phosphoric acid, and methanesulfonic acid. The polymers of aliphatic diamines were also insoluble in common organic solvents but soluble in trifluoroethanol. All polymers had melting points higher than 280°C.  相似文献   

17.
A group of six semiaromatic polyamides of 2,2′-[isopropylidenebis-(p-phenyleneoxy)]diacetic acid (Bisacid A2) were synthesized by low-temperature solution polycondensation techniques. Six different diamines were condensed independently with Bisacid A2 chloride in a mixture of N-methylpyrrolidone (NMP and hexamethylhosphoramide (HMPA). The polymers were obtained in 82–95% yield and possessed inherent viscosities in the range from 0.32 to 0.63 dL/g. The polyamides were characterized by IR and 'H-NMR spectra. The molecular weight and molecular weight distribution of the polyamides were determined by gel-permeation chromatography. The thermal stability, thermal degradation kinetics, crystallinity, density, and solubility were also determined. A model diamide (MDA) was synthesized from aniline and Bisacid A2 chloride to confirm the formation of polyamides from diamines.  相似文献   

18.
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Novel polyamides that contained p-terphenyl units were prepared with inherent viscosities in the range of 0.4–1.7 dL/g by the polycondensation of 4,4″-dichloroformyl-p-terphenyl with aromatic diamines and 4,4″-diamino-p-terphenyl with aromatic dicarbonyl chlorides. Polyamides composed of only paraoriented phenylene units were insoluble in all solvents and showed a high degree of crystallinity. A series of polyamides that contained p-terphenyl units were more thermostable than corresponding polymers with p-phenylene or biphenylene linkages.  相似文献   

20.
The acid chloride of 1,4-bis-p-carboxyphenyl-1,3-butadiene (XI) and isophthaloyl chloride (XIV) were polymerized with 4,4′-diphenoxy-diphenyl sulfone (XII) and diphenyl ether (XIII) in a Friedel-Crafts type of polymerization. The polymers obtained, which contained 5–20 mole % of butadiene units, were insoluble in all solvents. The polyamides prepared from the acid chloride of 1,4-bis-p-carboxyphenyl-1,3-butadiene (XI) and aromatic diamines were also insoluble in all solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号