首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Data are presented on the limits of detection for a series of nine compounds in negative chemical ionization (NCI) mass spectra obtained in five different mass spectrometers: Finnigan 4000 with a 4500 ion source, Kratos MS-80, Hewlett-Packard 5985 and two Finnigan 4500s. The nine compounds undergo either resonance capture or dissociative capture of an electron at optimum energies ranging from 0.0 to 1.1 eV. The limits of detection generally increased with increasing optimum electron energy. The limit of detection as a function of optimum electron capture energy is expected to provide information about the electron energy distribution in the ion sources. The data showed scatter within and between instruments. The scatter is believed to be due primarily to reactions with low levels of adventitious gases such as oxygen in the ion source. The data also suggested wide variations in electron energies between the instruments. The variation in the electron energy distribution is thought to have been caused by variations in the ion optical fields within the instruments. These results suggest that the requirements for reproducibility in NCI mass spectra at the limit of detection are rigorous control of trace gases in the ion source, control of the electric fields within the source including ion optical fields that penetrate the source aperture control of pressure, temperature and other factors that influence NCI mass spectra.  相似文献   

2.
3.
Damping gas flow was optimized for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) determination using ion trap mass spectrometer. A tandem mass spectrometry (MS-MS) method with better than unit-mass resolution (mass width, 0.3 u) was developed at a damping gas flow of 1.5 ml/min and a collision-induced dissociation (CID) voltage of 3.30 V. The relative standard deviation (R.S.D.) at the enhanced resolution was 2.9% in 24 h of consecutive injections. The detection limit was significantly improved because the efficiency of both precursor ion trapping and fragmentation increased with the damping gas flow. Product ion yield was 4.5 times higher and limit of detection was 3.2 times lower than at the default flow (0.3 ml/min and 1.65 V).  相似文献   

4.
Pentachlorophenol (PCP) was used as a model compound to explore the potential of desorption chemical ionization (DCI) in the determination of polychlorinated pesticides using membrane introduction mass spectrometry (MIMS). A direct insertion membrane probe was modified so that a chemical ionization plasma could be established at the membrane surface. Using selected ion monitoring (SIM) in a tandem triple quadrupole mass spectrometer with isobutane chemical ionization (CI), the PCP detection limit under positive chemical ionization is 20 ppb whereas negative CI gives detection limits in the low ppb range. This performance is achieved without any pre-treatment or derivatization of the sample. Negative ion CI gives a signal that is linear over a concentration range of 2-1000 ppb. Comparison of data obtained with low ppb samples of 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol suggests that the sensitivity of this analytical procedure increases with increase in the number of electronegative substituents in the molecule.  相似文献   

5.
The negative chemical ionization mass spectra of nitrobenzene, ethylene glycol dinitrate and nitroglycerine have been obtained using various reagent ions. For nitrobenzene, [OH]? gives the [M ? H]?, together with [M] ions formed by electron capture, but other reagent ions gave relatively low intensity adduct peaks. Ethylene glycol dinitrate and nitroglycerine gave abundant [M + X]? ions (X = NO2, NO3, Cl, Br, I), together with ions arising from the thermal decomposition of the samples in the heated inlet system. The rate of anion attachment to these compounds is much greater than that to related compounds having only one functional group, and it is suggested that this is due to the participation of the adjacent groups in the bonding between the substrate and anion.  相似文献   

6.
The hydrogen chemical ionization (H2 CI) mass spectra of a range of metal(II) (Ni, Cu, Co, Pt), metal (III) (Al, Mn, Ga, Fe (bearing a single axial ligand)) and metal(IV) (Si, Ge, Sn (bearing two axial ligands) and V (as V?O2+)) porphyrins have been determined, The spectra are highly dependent on the coordinated metal, rather than the axial ligand(s) (where present). Ni(II), Cu(II), Mn(II or III), Ga(III), Ge(IV), Fe(III) and Sn(IV) porphyrins fragment via hydrogenation and demetallation, followed by cleavage of the resulting porphyrinogens at the meso(bridge) positions to give mono- and di-pyrrolic fragments. Tripyrrolic fragments are also observed in the case of Ni(II), Cu(II) and Sn(IV). Fragmentations of this type are similar to those observed for free-base porphyrins. In the case of Pt(II), Co(II), Al(III), Si(IV) and V(IV) (as vanadyl), the dipyrrolic fragment ions are either very weak or completely absent; hence their H2CI spectra contain limited structural information. This variable CI behaviour may be related to the relative stabilities of the metalloporphyrins together with the multiple stable valency states exhibited by several metals.  相似文献   

7.
The fragmentation pathways of RDX in chemical ionization mass spectrometry have been rationalized, using data from different reagent gases, including CD4 and iso-C4D10. The dependence of spectra taken with different gases on the acid strength of the reactant ions in the gases is accounted for.  相似文献   

8.
9.
D.G.I. Kingston  H.M. Pales 《Tetrahedron》1973,29(24):4083-4086
The chemical ionization mass spectra of a representative selection of flavones, flavonols, flavanones, and flavanols have been examined, using methane as the reagent gas. The flavones and flavonols showed no significant fragmentation under the conditions employed, but the flavanones and flavanols showed characteristic fragmentation which could be of use in structural elucidation of these compounds.  相似文献   

10.
Several polychlorinated phenoxyphenols with three to nine chlorine atoms were examined as their methyl ethers by electron capture negative ion and positive ion chemical ionization and electron impact mass spectrometry. In chemical ionization studies methane, hydrogen, nitrogen, helium and argon were used as reagent gases. Selected compounds were also examined with deuteriomethane, ammonia and deuterioammonia as reagent gases. Utilization of chemical ionization spectra in conjuction with electron impact spectra provides substantial structural information about these compounds. Chemical ionization spectra provide information about chlorine atom substitution. The position of phenoxy substitution can be established from electron capture negative ion and positive ion spectra.  相似文献   

11.
12.
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.  相似文献   

13.
The negative chemical ionization mass spectra of representative perfluorinated alkanes, cycloalkanes, ethers and tertiary amines have been examined, using Ar at about 0.5 torr as the reagent gas. The compounds chosen are typical of those under study as components of fluorochemical emulsion blood substitutes. Many such PFC's, particularly those with cyclic or branched structures, give intense molecular ions; most give simple spectra with a few major fragment ions at high mass, in marked contrast to the EI spectra which are dominated by m/e 69 (CF3+) and 131 (C3F5+) of no value for structure elucidation. NCI-GC/MS is more sensitive than conventional EI-GC/MS and promises to be more generally useful for structure determination. Specific examples from the various classes will be presented, and their NCI and EI mass spectra compared.  相似文献   

14.
The elimination of SO2 from deprotonated sulfonamides in the negative ion mode was confirmed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) experiments. For a set of N-arylbenzenesulfonamides substituted at the para position of the arylamine, the ln([M-H-SO2](-)/[M-H]-) values were correlated with the sigmap(-) substituent constants but, instead of a linear relationship, a bent line was obtained. Analyses of the complex curve led to the identification of two competing routes, which were further investigated by Hartree-Fock theoretical calculations. Furthermore, collision-induced dissociation (CID) of deprotonated N-alkylbenzenesulfonamides containing the -CHCHNHSO2- structure yielded a [M-H-66](-) product ion This characteristic ion could help to distinguish the side-chain isomers.  相似文献   

15.
16.
Optimization of the operating conditions for desorption chemical ionization (D/CI) mass spectrometry has been evaluated on the production of molecular ion species as well as structurally informative fragment ion species with sucrose as a main model compound. Among various parameters examined, it was found that configuration and heating rate of the emitter wire were significantly concerned with the desorption efficiency, while chamber temperature played an important role on the control of the fragmentation process rather than the desorption process. Therefore, the conditions for optimal molecular ion species are quite opposed to those for optimal fragment ion species. The former can be achieved by the use of the highest heating rate combined with the lowest chamber temperature. Under the optimal operating conditions, a 20 ng sample of sucrose is adequate for recording a clear mass spectrum with good reproducibility, where [M·NH4]+ (m/z 360) is the base peak and the glycosyl ion [S·NH3]+ (m/z 180) also has moderate abundance (rel. int., 40%).  相似文献   

17.
Pyrolysis ammonia chemical ionization (PyCI) mass spectrometry was performed on hy-droxyethyl-, hydroxypropyl-,methyl-, hydroxypropylmethyl-, and ethylhydroxyethyl cel-luloses. The mass peaks in the PyCI mass spectra of these cellulose ethers could be assigned to the ions of pyrolytic dissociation products which form via the [2 + 2 + 2] cycloreversion and the Ei elimination pyrolysis pathway. Structural information about the residual amount of nonderivatized cellulose, the relative chain length distributions of the substituents in hydroxyalkyl celluloses, and the end-capping of hydroxyalkyl substituents by alkyl groups in the mixed cellulose ethers is obtained. Interference of secondary pyrolysis products in the PyCI mass spectra is found to be of minor importance, especially in the lower mass regions. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Pyrolysis/mass spectrometric studies have been made on polystyrene, poly(vinyl chloride), and poly(methyl methacrylate) with electron ionization (EI) and chemical ionization (CI) mass spectrometry and a variable temperature probe for direct insertion into the source of the mass spectrometer. Similar results obtained with EI and CI mass spectrometry are in agreement with previous experiments. Advantages of the simplification of spectra in the CI made, as well as the advantages of using both techniques for identification of pyrolysis products, are discussed.  相似文献   

19.
Formation of ions in chemical ionization mass spectrometry of flavonoid compounds has been studied. Production of adduct ions and fragment ions as a function of ring substituents and of reagent gas has been observed. Pressure and repeller field dependence of ions has been found as a function of ring substituents.  相似文献   

20.
The usual method of studying thermal degradation mechanisms of polymers in vacuo is to use electron ionization pyrolysis mass spectrometry. This can lead to mass spectral fragmentation from the 70 eV electrons used. Low energy electrons (10–15 eV) produce a low abundance of positive ions. However, if a molecule is prone to capture a thermal energy electron, then negative ions are produced in high abundance. This report describes the negative ion pyrolysis mass spectrometry of polyethylene terephthalate and polybutylene terephthalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号