首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
目前的失超检测的方法多针对超导线圈的直流工作状态。在交流损耗等实验研究及部分电力应用中,超导线圈将工作在交流通流状态。为了保障这种情况下超导线圈的安全,需要进行交流失超检测方法的研究。设计了用于高温超导线圈交流通流的失超检测方法,将桥路交流电压信号转换为直流信号后,对工作在交流通流情况下的超导线圈的失超状态进行判断。通过搭建实验平台进行了相关的实验。实验结果显示,采用这种方法能够有效地对工作在交流情况下的超导线圈进行失超检测。  相似文献   

2.
通过对国内外各种失超检测方法优缺点的比较,本文选取有源功率检测法来实现超导线圈的失超检测,并针对超导线圈电感值相等和电感值不等两种情况对有源功率失超检测电路进行了改进以及实验验证.结果表明,该失超检测方法能够及时准确的检测到失超信号,为超导线圈的失超保护提供了可靠的前提条件.  相似文献   

3.
钱静  陈灼民 《低温与超导》2003,31(1):10-12,19
中心螺管是超导托卡马克装置磁体系统的重要组成部分 ,在 HT- 7U中 ,中心螺管采用管装超导电缆绕制 ,线圈以脉冲方式运行。文中介绍了 HT- 7U中心螺管模型线圈实验中 ,失超信号检测系统的工作原理及失超信号特点。当磁体以脉冲方式运行时 ,失超信号检测系统为装置提供可靠的失超保护动作信号 ;还给出了有关的实验数据和检测系统记录的失超信号变化曲线。  相似文献   

4.
用经验失超判据Ec=1μV/cm可以对高温超导线圈在直流情况下的临界电流进行检测,但对于高温超导线圈交流时的临界电流还没有一个标准.利用声发射传感器对高温超导线圈的交流临界电流进行了初步研究,并把结果与直流临界电流进行了比较,结果表明在低于直流临界电流时,声发射传感器获得了明显改变的声信号,即高温超导线圈的交流临界电流...  相似文献   

5.
EAST装置做为全超导托卡马克装置,其纵场和极向场线圈全部由超导磁体组成,所以进行安全,准确,有效的超导线圈的失超保护是装置安全运行的首要环节.由于等离子体电流的建立必须由极向场线圈系统提供极快速的磁通变化,随之产生较高的交流损耗使得极向场线圈很容易发生失超.如何对快速交变脉冲磁场下的超导线圈进行有效的失超检测,这在世界上也无先例可循.EAST装置的失超检测系统经过几十轮单饼超导线圈实验及多轮装置正式放电实验后逐步建立和完善起来,并已通过工程验收满足了装置实验运行要求.本文主要介绍了EAST装置失超检测系统的基本结构和检测原理,重点阐述了极向场超导磁体失超检测的设计方法及实验结果。  相似文献   

6.
为保证高温超导线圈稳定运行,利用基于拉曼散射技术的分布式温度传感器对其进行温度检测而提前预判失超状态是当前的研究热点之一,通过观测温度变化率为提高检测速度提供一种新的思路.将6.2 m的单模光纤缠绕并固定于超导线圈的上表面进行失超温度检测,实验得出了失超后线圈温度分布规律,并验证了该方法的可行性.  相似文献   

7.
大型托卡马克超导装置的超导线圈在快速励磁条件下 ,将在线圈中产生很大的感应电压噪声 ,可能比用于失超检测的电阻电压大几个量级 ,同时在大电流和快速励磁条件下失超保护对确保装置安全变得尤为重要。文中主要提出在超导线圈大电流和快速励磁条件下如何进行正确失超保护的一种方便又可行的工程方法 ,并在中科院等离子体所对 HT- 7U第一个超导中心螺管原型线圈进行的性能测试实验中取得了成功。  相似文献   

8.
超导磁体的失超检测与保护是超导电力技术实用化的一个重要课题。文中针对超导储能系统的特点,设计了一套用于超导储能(SMES)磁体的失超检测系统。该系统采用有源功率检测方法,通过对超导磁体上产生的失超信号进行隔离、放大、滤波以及比较等,实现失超信号的检测。实验结果表明,该失超检测系统能够及时准确的检测到失超信号,为超导储能系统的失超保护提供了可靠的前提条件。  相似文献   

9.
失超检测对于大型超导装置(例如EAST、ITER等全超导托克马克聚变装置)的长期稳态运行至关重要.本文目的是探索一种新型失超检测方法(射频波法)并评估其实际使用价值.首次将射频波技术应用于失超检测,根据射频传输线理论,设计了一套新型失超检测系统.通过端电压和射频失超检测方法同时检测Bi2223带材绕制的线圈的失超情况,以电压法作为参考依据评判射频检测方法的效果.多次实验证明,射频波法能够用于失超检测,在线圈电阻变为几十个微欧的时候就能够检测出失超.在小线圈上实现可重复检测实验.并在实验中获得了很多有用的信息以进一步改进该方法.  相似文献   

10.
中国科学院上海应用物理研究所成功进行了超导波荡器模拟线圈研制,高速高精度测试平台搭建;并在制冷机直接冷却式小型超导磁体测试平台上完成了失超信号采集,分析了失超信号,得出失超传播相关数据,完成了超导波荡器模拟线圈失超动态过程测试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号