首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sedimentation of a rectangular particle falling in a two-dimensional channel filled with Newtonian fluid was simulated with finite element arbitrary Lagrangian–Eulerian domain method. The numerical procedure was validated by comparison of the simulation results with existing numerical work. Moreover, good agreement was obtained between the simulation results and experimental measurements performed in the current study. The equilibrium position, stable orientation and drag coefficient of a rectangular particle for different particle Reynolds numbers (Rep) were studied. The results show that there is a critical particle Reynolds number for the preferred orientation of a rectangular particle falling in a Newtonian fluid. When Rep is smaller than the critical value, the particle falls with its long side parallel to gravity; otherwise the particle falls with its long side perpendicular to gravity. The critical particle Reynolds number is a decreasing function of the blockage ratio and aspect ratio. The distributions of pressure and shear stress on rectangular particle surface were analyzed. Moreover, the drag coefficient of the rectangular particle decreases as Rep or the blockage ratio increases; however, it appears to be independent of aspect ratio.  相似文献   

2.
Although equilibrium of spherical particles under radial migration has been extensively investigated, mostly in macroscale flows with characteristic lengths on the order of centimeters, it is not fully characterized at relatively small Reynolds numbers, 1 ≤ Re ≤ 100. This paper experimentally studies “inertial microfluidic” radial migration of spherical particles in circular Poiseuille flow through a microcapillary. Microparticle tracking experiments are performed to obtain the spatial distribution of the particles by adopting a depth-resolved measurement technique. Through the analysis of the radial distribution of particles, inertial microfluidic circular Poiseuille flow is shown to induce a strong radial migration of particles at substantially small Re, which is quite in contrast to the pipe flows at large Re previously reported. This particle migration phenomenon is so prominent that particle equilibrium positions are formed even at small Re. However, it turns out that there exists a certain critical Re below which particle equilibrium position is almost fixed, but above which it seems to drift toward the channel wall.  相似文献   

3.
Particle velocity and concentration statistics were measured in a vertically downward planar sudden expansion flow for large-eddy particle Stokes numbers (τpUo/5H) ranging from 0.5 to 7.4. Particles with Stokes numbers greater than 3 did not enter the recirculation zone, exhibited substantial attenuation of cross-stream velocity fluctuations, and had large streamwise velocity fluctuations in regions of strong velocity gradient. The smallest particles filled the recirculation zone and showed strong response to the large eddies in the flow. Phase-locked particle concentration measurements showed that these particles were centrifuged away from vortex cores and concentrated between vortices. Intermediate-size particles with Stokes numbers of 1.4 were injected intermittently into the recirculation zone as tongues of particles moving down between vortices. Particle Reynolds number was found to have negligible effect on the particle velocity statistics.  相似文献   

4.
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4 :2244–2251; Int. J. Multiphase Flow 2000; 26 :1583–1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 μm were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows.  相似文献   

6.
采用格子Boltzmann-虚拟区域方法对雷诺数范围为50≤Re≤200的双颗粒自由沉降进行了直接数值模拟。首先,研究发现双颗粒最终沉降的位置分别在通道的1/4和3/4位置附近,且与颗粒的初始间距、雷诺数以及通道宽度无关。其次,重点研究了颗粒沉降过程中所受的侧向力(与沉降方向垂直),首次揭示了侧向力的振动频率与雷诺数呈二次关系,且单颗粒的结果始终小于双颗粒的结果;研究还发现侧向力的振动频率与通道宽度近似呈幂律函数关系,且幂律指数与雷诺数有关,雷诺数越大,幂律指数的绝对值越小。最后还研究了雷诺数及通道宽度对侧向力振动振幅的影响。  相似文献   

7.
Direct numerical simulations (DNS) of incompressible turbulent channel flows coupled with Lagrangian particle tracking are performed to study the characteristics of ejections that surround solid particles. The behavior of particles in dilute turbulent channel flows, without particle collisions and without feedback of particles on the carrier fluid, is studied using high Reynolds number DNS (Re = 12,500). The results show that particles moving away from the wall are surrounded by ejections, confirming previous studies on this issue. A threshold value separating ejections with only upward moving particles is established. When normalized by the square root of the Stokes number and the square of the friction velocity, the threshold profiles follow the same qualitative trends, for all the parameters tested in this study, in the range of the experiments. When compared to suspension thresholds proposed by other studies in the Shields diagram, our simulations predict a much larger value because of the measure used to characterize the fluid and the criterion chosen to decide whether particles are influenced by the surrounding fluid. However, for intermediate particle Reynolds numbers, the threshold proposed here is in fair agreement with the theoretical criterion proposed by Bagnold (1966) [Bagnold, R., 1966. Geological Survey Professional Paper, vol. 422-1]. Nevertheless, further studies will be conducted to understand the normalization of the threshold.  相似文献   

8.
9.
The solution of the Poisson's equation used by the incompressible smoothed particle hydrodynamics (ISPH) methods for estimating the pressure field is expensive in CPU time. The CPU time, consumed by the inversion of the operator ∇(1/ρ∇) and the estimation of the right hand side of the Poisson's equation, increases with the number N of particles used in a purely Lagrangian framework. In this work, this default of ISPH methods is overcome by solving the Poisson's equation on a Cartesian grid. This SPH-mesh coupling is equivalent to the particle in cell method. In a first step, in order to analyze its efficiency, the optimized version of two ISPH methods (divergence free and density invariant) is compared with the standard weakly compressible SPH method through two benchmarks of incompressible bidimensional flows characterized by the Reynolds number Re, Lamb-Oseen vortex (10 ≤Re≤ 100) and lid-driven cavity flow (100 ≤Re≤ 1000). In a second step, the numerical results obtained by the three SPH methods are compared to laboratory experimental data of a dam break flow in order to show the performance of the SPH-mesh coupling in a practical and complex flow problem. As in the configuration of the experimental setup, the numerical results are obtained for a Reynolds number Re = 3.8 106.  相似文献   

10.
对于Oldroyd-B型黏弹性流体,本文应用格子Boltzmann方法(LBM),实现了流体在二维1:3扩张流道及3:1收缩流道中流动的数值模拟,获得了黏弹性流体在扩张和收缩流道中的流场分布.结合颗粒的受力和运动规则,基于点源颗粒模型,数值分析了颗粒在扩张流和收缩流中的沉降过程和特征,讨论了颗粒相对质量和起始位置以及雷诺数Re和威森伯格数Wi对颗粒沉降特征的影响.结果表明,颗粒相对质量和起始位置以及Re对颗粒沉降轨迹和落点影响较大,而Wi的影响则较小.  相似文献   

11.
Two-dimensional flow over periodically arranged hills was investigated experimentally in a water channel. Two-dimensional particle image velocimetry (PIV) and one-dimensional laser Doppler anemometry (LDA) measurements were undertaken at four Reynolds numbers ( \text5,600 £ Re £ \text37,000\text{5,600} \le Re \le \text{37,000}). Two-dimensional PIV field measurements were thoroughly validated by means of point-by-point 1D LDA measurements at certain positions of the flow. A detailed study of the periodicity and the homogeneity was undertaken, which demonstrates that the flow can be regarded as two-dimensional and periodic for Re 3 \text10,000Re \ge \text{10,000}. We found a decreasing reattachment length with increasing Reynolds number. This is connected to a higher momentum in the near-wall zone close to flow separation which comes from the velocity speed up above the obstacle. This leads to a velocity overshoot directly above the hill crest which increases with Reynolds number as the inner layer depth decreases. The flow speed up above that layer is independent of the Reynolds number which supports the assumption of inviscid flow disturbance in the outer layer usually made in asymptotic theory for flow over small hills.  相似文献   

12.
The drag of non-spherical particles is a basic, important parameter for multi-phase flow. As the first step in research in this area, the terminal velocities, Ut, of hemispherical and spherical segment particles with maximal diameters of 6-21 mm were measured in static fluids by using a high-speed video camera. The drag coefficient, CD, measured for Reynolds number, Re of 10^1-10^5, has been obtained and compared with those for a sphere. The Re based on the terminal velocity has a logarithmic linear relationship with Ar number for both the facet facing upwards or downwards for the two experimental spheroidal particles, and their Co values are greater than those of spheres. A shape function that depends on the initial orientation of the particle facet is presented to correct for the shape effects.  相似文献   

13.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

14.
The history force model accounts for temporal development in fluid gradients in the viscous region surrounding a particle in point particle methods. The calculation of the history force typically requires storing and using relative velocity information during the life time of the particle. For a large number of particles integrated over large times, history force calculation can become prohibitively expensive. The current work presents a new modeling approach to calculate the history force in which a decay function is applied to a stored cumulative value of the history force. The proposed formulation is equivalent to applying the same function obtained from a constant acceleration assumption to a running average of the acceleration within the memory time of the particle. The new force model is validated with experimental measurements of settling spheres at Reynolds numbers ranging from around one to a few hundreds and at density ratios from 1.2 to about 9.32. More validation work was carried-out with experimental measurements of oscillating spheres at different frequencies and amplitudes, as well as bouncing spheres at different Reynolds numbers and density ratios. The model shows very good agreement with the experiments of settling spheres and reasonable/good agreement with oscillating and bouncing sphere experiments. The proposed model significantly reduces the computational resources required to calculate the history force especially when large number of particles need to be integrated over long times.  相似文献   

15.
The numerical simulation with two-way coupling was performed in a liquid -particle mixing layer and the corresponding experiment study was made. In the process of vortex rolling up and vortices pairing, the particles with different St number have a very different pattern of dispersion. The mean velocity of particle with St = 1 is higher than that of the fluid phase on the low-speed side, and lower than that of the fluid phase on the high-speed side. The RMS of particle approaches that of the fluid phase with decreasing particle St number. The RMS in the transverse direction is smaller than that in the streamwise direction. The velocity fluctuation correlation of particle is smaller than the Reynolds shear stress, the “overshoot“ phenomenon that the velocity fluctuation correlation of particle is larger than the Reynolds shear stress does not appear. The larger the St number of particle is, the wider the range of the particle dispersion will be. The computed results are in agreement with the experimental ones.  相似文献   

16.
In order to understand the hydrodynamic interactions that can appear in a fluid particle motion, an original method based on the equations governing the motion of two immiscible fluids has been developed. These momentum equations are solved for both the fluid and solid phases. The solid phase is assumed to be a fluid phase with physical properties, such as its behaviour can be assimilated to that of pseudo‐rigid particles. The only unknowns are the velocity and the pressure defined in both phases. The unsteady two‐dimensional momentum equations are solved by using a staggered finite volume formulation and a projection method. The transport of each particle is solved by using a second‐order explicit scheme. The physical model and the numerical method are presented, and the method is validated through experimental measurements and numerical results concerning the flow around a circular cylinder. Good agreement is observed in most cases. The method is then applied to study the trajectory of one settling particle initially off‐centred between two parallel walls and the corresponding wake effects. Different particle trajectories related to particulate Reynolds numbers are presented and commented. A two‐body interaction problem is investigated too. This method allows the simulation of the transport of particles in a dilute suspension in reasonable time. One of the important features of this method is the computational cost that scales linearly with the number of particles. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
An experimental investigation of a high Reynolds number flow (Re = 320 000) of a dilute liquid-solid mixture (<1% by volume) was conducted. The turbulent motion of both the liquid phase (water) and particles (0.5, 1, and 2 mm glass beads) was evaluated in an upward pipe flow using a particle image/tracking velocimetry (PIV/PTV) technique. Results show that the Eulerian mean axial velocity of the glass beads is lower than that of the liquid phase in the central region but higher in the near-wall region. Moreover, the presence of the coarse particles has a negligible effect on the turbulence intensity of the liquid phase. Particles show higher streamwise and radial fluctuations than the liquid-phase at the tested conditions. The profiles of particle concentration across the pipe radius show almost constant concentration in the core of the pipe with a decrease towards the near wall region for 0.5 and 1 mm particles. For the 2 mm particles, a nearly linear concentration gradient from centre to the pipe wall is observed. The results presented here provide new information concerning the effect of a dispersed particulate phase on the turbulence modulation of the liquid carrier phase, especially at high Reynolds numbers. The present study also demonstrates how correlations developed to determine if particles cause turbulence attenuation/augmentation are not applicable for solid-liquid flows at high Reynolds numbers. Finally, the importance of particle-fluid slip velocity on fluid phase turbulence modulation is illustrated.  相似文献   

18.
In this work we introduce an Eulerian–Eulerian formulation for gravity currents driven by inertial particles. The model is based on the equilibrium Eulerian approach and on an asymptotic expansion of the two-phase flow equations. The final model consists of conservation equations for the continuum phase (carrier fluid), an algebraic equation for the disperse phase (particles) velocity that accounts for settling and inertial effects, and a transport equation for the disperse phase volume fraction. We present highly resolved two-dimensional (2D) simulations of the flow for a Reynolds number of Re=3450Re=3450 (this particular choice corresponds to a value of Grashof number of Gr=Re2/8=1.5×106Gr=Re2/8=1.5×106) in order to address the effect of particle inertia on flow features. The simulations capture physical aspects of two-phase flows, such as particle preferential concentration and particle migration down turbulence gradients (turbophoresis), which modify substantially the structure and dynamics of the flow. We observe the migration of particles from the core of Kelvin–Helmholtz vortices shed from the front of the current as well as their accumulation in the current head. This redistribution of particles in the current affects the propagation speed of the front, bottom shear stress distribution, deposition rate and sedimentation. This knowledge is helpful for the interpretation of the geologic record.  相似文献   

19.
In this paper we present a two-dimensional numerical study of the viscoelastic effects on the sedimentation of particles in the presence of solid walls or another particle. The Navier-Stokes equations coupled with an Oldroyd-B model are solved using a finite-element method with the EVSS formalism, and the particles are moved according to their equations of motion. In a vertical channel filled with a viscoelastic fluid, a particle settling very close to one side wall experiences a repulsion from the wall; a particle farther away from the wall is attracted toward it. Thus a settling particle will approach an eccentric equilibrium position, which depends on the Reynolds and Deborah numbers. Two particles settling one on top of the other attract and form a doublet if their initial separation is not too large. Two particles settling side by side approach each other and the doublet also rotates till the line of centers is aligned with the direction of sedimentation. The particle-particle interactions are in qualitative agreement with experimental observations, while the wall repulsion has not been documented in experiments. The driving force for lateral migrations is shown to correlate with the pressure distribution on the particle's surface. As a rule, viscoelasticity affects the motion of particles by modifying the pressure distribution on their surface. The direct contribution of viscoelastic normal stresses to the force and torque is not important.  相似文献   

20.
A theory is presented for describing the sedimentation of polydisperse suspensions in two-dimensional channels having walls that are inclined to the vertical. The theory assumes that the flow is laminar and that the suspension consists of spherical beads having small particle Reynolds numbers. The suspension may consist of either N distinct species of particles or of a continuum of particle sizes and densities. For the sake of simplicity, the analysis is mostly confined to the case in which the hindered settling velocity of each particle is given by its Stokes settling velocity multiplied by a function of the total local solids concentration. Under these conditions, results are developed that are useful for the design of either batch or continuous settling devices. Experimental observations were found to be in good agreement with the predictions of the present theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号