首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: DeltaH0r(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and DeltaH0t(CH3CH,3A' ') = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +/-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as DeltaES-T,vert = 104.1 and DeltaES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +/- 0.3 and 66.4 +/- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +/- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is DeltaES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is DeltaH0tC2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by approximately 7 to 8 kcal/mol. For vinylidene, we predict DeltaH0t(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +/- 4.0), DeltaH0t(H2CC,3B2) = 146.2 at 298 K, and an energy gap DeltaES-T-adia(H2CC) = 47.7 kcal/mol.  相似文献   

2.
Thermochemical parameters of three C(2)H(5)O* radicals derived from ethanol were reevaluated using coupled-cluster theory CCSD(T) calculations, with the aug-cc-pVnZ (n = D, T, Q) basis sets, that allow the CC energies to be extrapolated at the CBS limit. Theoretical results obtained for methanol and two CH(3)O* radicals were found to agree within +/-0.5 kcal/mol with the experiment values. A set of consistent values was determined for ethanol and its radicals: (a) heats of formation (298 K) DeltaHf(C(2)H(5)OH) = -56.4 +/- 0.8 kcal/mol (exptl: -56.21 +/- 0.12 kcal/mol), DeltaHf(CH(3)C*HOH) = -13.1 +/- 0.8 kcal/mol, DeltaHf(C*H(2)CH(2)OH) = -6.2 +/- 0.8 kcal/mol, and DeltaHf(CH(3)CH(2)O*) = -2.7 +/- 0.8 kcal/mol; (b) bond dissociation energies (BDEs) of ethanol (0 K) BDE(CH(3)CHOH-H) = 93.9 +/- 0.8 kcal/mol, BDE(CH(2)CH(2)OH-H) = 100.6 +/- 0.8 kcal/mol, and BDE(CH(3)CH(2)O-H) = 104.5 +/- 0.8 kcal/mol. The present results support the experimental ionization energies and electron affinities of the radicals, and appearance energy of (CH(3)CHOH+) cation. Beta-C-C bond scission in the ethoxy radical, CH(3)CH2O*, leading to the formation of C*H3 and CH(2)=O, is characterized by a C-C bond energy of 9.6 kcal/mol at 0 K, a zero-point-corrected energy barrier of E0++ = 17.2 kcal/mol, an activation energy of Ea = 18.0 kcal/mol and a high-pressure thermal rate coefficient of k(infinity)(298 K) = 3.9 s(-1), including a tunneling correction. The latter value is in excellent agreement with the value of 5.2 s(-1) from the most recent experimental kinetic data. Using RRKM theory, we obtain a general rate expression of k(T,p) = 1.26 x 10(9)p(0.793) exp(-15.5/RT) s(-1) in the temperature range (T) from 198 to 1998 K and pressure range (p) from 0.1 to 8360.1 Torr with N2 as the collision partners, where k(298 K, 760 Torr) = 2.7 s(-1), without tunneling and k = 3.2 s(-1) with the tunneling correction. Evidence is provided that heavy atom tunneling can play a role in the rate constant for beta-C-C bond scission in alkoxy radicals.  相似文献   

3.
The effect of aromatic substitution on the singlet-triplet energy gap in substituted phenyl(carbomethoxy)carbene (X-Ph-C-CO(2)CH(3), PCC) has been explored by time-resolved infrared (TRIR) spectroscopy and gas-phase computational methods. The ground state of para-substituted PCC is calculated to change from the triplet state in p-NO(2)-PCC (Delta G(ST) = 6.1 kcal/mol) to the singlet state in p-NH(2)-PCC (Delta G(ST) = -2.8 kcal/mol). The absence of solvent perturbation in the TRIR spectra of p-N(CH(3))(2)-PCC (which should have electronic properties similar to p-NH(2)-PCC) and parent PCC is consistent with their ground states lying > +/-2 kcal/mol from the next available electronic state, in line with the computational results. The observation of solvent perturbation in the TRIR spectra of p-OCH(3)-PCC and p-CH(3)-PCC implies that their ground states lie < +/-1 kcal/mol from their next available electronic state. This is in agreement with our computational results, which predict a gas-phase Delta G(ST) of -0.8 and 1.6 kcal/mol for p-OCH(3)-PCC and p-CH(3)-PCC as compared to Delta G(ST) values of -3.9 and -1.3 kcal/mol from polarizable continuum model (PCM) calculations with acetonitrile as a solvent. Gas-phase computational results for the meta- and ortho-substituted PCC species are also presented, along with selected linear free energy (LFE) relationships for the para and meta species.  相似文献   

4.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

5.
Energy-resolved, competitive threshold collision-induced dissociation (TCID) methods are used to measure the gas-phase acidities of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid relative to hydrogen cyanide, hydrogen sulfide, and the hydroperoxyl radical using guided ion beam tandem mass spectrometry. The gas-phase acidities of Delta(acid)H298(C6H5OH) = 1456 +/- 4 kJ/mol, Delta(acid)H298(3-CH3C6H4OH) = 1457 +/- 5 kJ/mol, Delta(acid)H298(2,4,6-(CH3)3C6H2OH) = 1456 +/- 4 kJ/mol, and Delta(acid)H298(CH3COOH) = 1457 +/- 6 kJ/mol are determined. The O-H bond dissociation enthalpy of D298(C6H5O-H) = 361 +/- 4 kJ/mol is derived using the previously published experimental electron affinity for C6H5O, and thermochemical values for the other species are reported. A comparison of the new TCID values with both experimental and theoretical values from the literature is presented.  相似文献   

6.
The unimolecular dissociation of CH3OOH is investigated by exciting the molecule in the region of its 5nu(OH) band and probing the resulting OH fragments using laser-induced fluorescence. The measured OH fragment rotational and translational energies are used to determine the CH3O-OH bond dissociation energy, which we estimate to be approximately 42.6+/-1 kcal/mol. Combining this value with the known heats of formation of the fragments also gives an estimate for the heat of formation of CH3OOH which at 0 K we determine to be deltaH(f)0=-27+/-1 kcal/mol. This experimental value is in good agreement with the results of ab initio calculations carried out at the CCSD(T)/complete basis set limit which finds the heat of formation of CH3OOH at 0 K to be deltaH(f)0=-27.3 kcal/mol.  相似文献   

7.
The propargyl radical has twelve fundamental vibrational modes, gamma(vib)(HCCCH2) = 5a1 [symbol: see text] 3b1 [symbol: see text] 4b2, and nine have been detected in a cryogenic matrix. Ab initio coupled-cluster anharmonic force field calculations were used to help guide some of the assignments. The experimental HC=:C-:CH2 matrix frequencies (cm(-1)) and polarizations are a1 modes--3308.5 +/- 0.5, 3028.3 +/- 0.6, 1935.4 +/- 0.4, 1440.4 +/- 0.5, 1061.6 +/- 0.8; b1 modes--686.6 +/- 0.4, 483.6 +/- 0.5; b2 modes--1016.7 +/- 0.4, 620 +/- 2. We recommend a complete set of gas-phase vibrational frequencies for the propargyl radical, HC=:C-:CH2 2 X (2)B1. From an analysis of the vibrational spectra, the small electric dipole moment, mu(D)(HCCCH2) = 0.150 D, and the large resonance energy (HCCCH2), roughly 11 kcal mol(-1), we conclude that propargyl is a completely delocalized hydrocarbon radical and is best written as HC=:C-:CH2.  相似文献   

8.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

9.
The heats of formation for the borane amines BH3NH3, BH2NH2, and HBNH, tetrahedral BH4-, and the BN molecule have been calculated by using ab initio molecular orbital theory. Coupled cluster calculations with single and double excitations and perturbative triples (CCSD(T)) were employed for the total valence electronic energies. Correlation consistent basis sets were used, up through the augmented quadruple-zeta, to extrapolate to the complete basis set limit. Core/valence, scalar relativistic, and spin-orbit corrections were included in an additive fashion to predict the atomization energies. Geometries were calculated at the CCSD(T) level up through at least aug-cc-pVTZ and frequencies were calculated at the CCSD(T)/aug-cc-pVDZ level. The heats of formation (in kcal/mol) at 0 K in the gas phase are Delta Hf(BH3NH3) = -9.1, Delta Hf(BH2NH2) = -15.9, Delta Hf(BHNH) = 13.6, Delta Hf(BN) = 146.4, and Delta Hf(BH4-) = -11.6. The reported experimental value for Delta Hf(BN) is clearly in error. The heat of formation of the salt [BH4-][NH4+](s) has been estimated by using an empirical expression for the lattice energy and the calculated heats of formation of the two component ions. The calculations show that both BH3NH3(g) and [BH4-][NH4+](s) can serve as good hydrogen storage systems which release H2 in a slightly exothermic process. The hydride affinity of BH3 is calculated to be 72.2 kcal/mol, in excellent agreement with the experimental value at 298 K of 74.2 +/- 2.8 kcal/mol.  相似文献   

10.
The thermal instability of alpha-fluoroalcohols is generally attributed to a unimolecular 1,2-elimination of HF, but the barrier to intramolecular HF elimination from CF3OH is predicted to be 45.1 +/- 2 kcal/mol. The thermochemical parameters of trifluoromethanol were calculated using coupled-cluster theory (CCSD(T)) extrapolated to the complete basis set limit. High barriers of 42.9, 43.1, and 45.0 kcal/mol were predicted for the unimolecular decompositions of CH2FOH, CHF2OH, and CF3OH, respectively. These barriers are lowered substantially if cyclic H-bonded dimers of CF3OH with complexation energies of approximately 5 kcal/mol are involved. A six-membered ring dimer has an energy barrier of 28.7 kcal/mol and an eight-membered dimer has an energy barrier of 32.9 kcal/mol. Complexes of CF3OH with HF lead to strong H-bonded dimers, trimers and tetramers with complexation energies of approximately 6, 11, and 16 kcal/mol, respectively. The dimer, CH3OH:HF, and the trimers, CF3OH:2HF and (CH3OH)2:HF, have decomposition energy barriers of 26.7, 20.3, and 22.8 kcal/mol, respectively. The tetramer (CH3OH:HF)2 gives rise to elimination of two HF molecules with a barrier of 32.5 kcal/mol. Either CF3OH or HF can act as catalysts for HF-elimination via an H-transfer relay. Because HF is one of the decomposition products, the decomposition reactions become autocatalytic. If the energies due to complexation for the CF3OH-HF adducts are not dissipated, the effective barriers to HF elimination are lowered from approximately 20 to approximately 9 kcal/mol, which reconciles the computational results with the experimentally observed stabilities.  相似文献   

11.
Various new thermally air- and water-stable alkyl and aryl analogues of (acac-O,O)2Ir(R)(L), R-Ir-L (acac-O,O = kappa2-O,O-acetylacetonate, -Ir- is the trans-(acac-O,O)2Ir(III) motif, R = CH3, C2H5, Ph, PhCH2CH2, L = Py) have been synthesized using the dinuclear complex [Ir(mu-acac-O,O,C3)-(acac-O,O)(acac-C3)]2, [acac-C-Ir]2, or acac-C-Ir-H2O. The dinuclear Ir (III) complexes, [Ir(mu-acac-O,O,C3)-(acac-O,O)(R)]2 (R = alkyl), show fluxional behavior with a five-coordinate, 16 electron complex by a dissociative pathway. The pyridine adducts, R-Ir-Py, undergo degenerate Py exchange via a dissociative mechanism with activation parameters for Ph-Ir-Py (deltaH++ = 22.8 +/- 0.5 kcal/mol; deltaS++ = 8.4 +/- 1.6 eu; deltaG++298 K) = 20.3 +/- 1.0 kcal/mol) and CH3-Ir-Py (deltaH++ = 19.9 +/- 1.4 kcal/mol; deltaS++ = 4.4 +/- 5.5 eu; deltaG++298 K) = 18.6 +/- 0.5 kcal/mol). The trans complex, Ph-Ir-Py, undergoes quantitatively trans-cis isomerization to generate cis-Ph-Ir-Py on heating. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to generate Ph-Ir-Py and RH. The activation parameters (deltaS++ =11.5 +/- 3.0 eu; deltaH++ = 41.1 +/- 1.1 kcal/mol; deltaG++298 K = 37.7 +/- 1.0 kcal/mol) for CH activation were obtained using CH3-Ir-Py as starting material at a constant ratio of [Py]/[C6D6] = 0.045. Overall the CH activation reaction with R-Ir-Py has been shown to proceed via four key steps: (A) pre-equilibrium loss of pyridine that generates a trans-five-coordinate, square pyramidal intermediate; (B) unimolecular, isomerization of the trans-five-coordinate to generate a cis-five-coordinate intermediate, cis-R-Ir- square; (C) rate-determining coordination of this species to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope effects on the CH activation with mixtures of C6H6/C6D6 (KIE = 1) and with 1,3,5-C6H3D3 (KIE approximately 3.2 at 110 degrees C) are consistent with this reaction mechanism.  相似文献   

12.
A series of stable complexes, (PMe(3))(3)Ru(SiR(3))(2)(H)(2) ((SiR(3))(2) = (SiH(2)Ph)(2), 3a; (SiHPh(2))(2), 3b; (SiMe(2)CH(2)CH(2)SiMe(2)), 3c), has been synthesized by the reaction of hydridosilanes with (PMe(3))(3)Ru(SiMe(3))H(3) or (PMe(3))(4)Ru(SiMe(3))H. Compounds 3a and 3c adopt overall pentagonal bipyramidal geometries in solution and the solid state, with phosphine and silyl ligands defining trigonal bipyramids and ruthenium hydrides arranged in the equatorial plane. Compound 3a exhibits meridional phosphines, with both silyl ligands equatorial, whereas the constraints of the chelate in 3c result in both axial and equatorial silyl environments and facial phosphines. Although there is no evidence for agostic Si-H interactions in 3a and 3b, the equatorial silyl group in 3c is in close contact with one hydride (1.81(4) A) and is moderately close to the other hydride (2.15(3) A) in the solid state and solution (nu(Ru.H.Si) = 1740 cm(-)(1) and nu(RuH) = 1940 cm(-)(1)). The analogous bis(silyl) dihydride, (PMe(3))(3)Ru(SiMe(3))(2)(H)(2) (3d), is not stable at room temperature, but can be generated in situ at low temperature from the 16e(-) complex (PMe(3))(3)Ru(SiMe(3))H (1) and HSiMe(3). Complexes 3b and 3d have been characterized by multinuclear, variable temperature NMR and appear to be isostructural with 3a. All four complexes exhibit dynamic NMR spectra, but the slow exchange limit could not be observed for 3c. Treatment of 1 with HSiMe(3) at room temperature leads to formation of (PMe(3))(3)Ru(SiMe(2)CH(2)SiMe(3))H(3) (4b) via a CH functionalization process critical to catalytic dehydrocoupling of HSiMe(3) at higher temperatures. Closer inspection of this reaction between -110 and -10 degrees C by NMR reveals a plethora of silyl hydride phosphine complexes formed by ligand redistribution prior to CH activation. Above ca. 0 degrees C this mixture converts cleanly via silane dehydrogenation to the very stable tris(phosphine) trihydride carbosilyl complex 4b. The structure of 4b was determined crystallographically and exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si.HRu interactions are not indicated in the structure or by IR, the HSi distances (2.00(4) - 2.09(4) A) and average coupling constant (J(SiH) = 25 Hz) suggest some degree of nonclassical SiH bonding in the RuH(3)Si moiety. The least hindered complex, 3a, reacts with carbon monoxide principally via an H(2) elimination pathway to yield mer-(PMe(3))(3)(CO)Ru(SiH(2)Ph)(2), with SiH elimination as a minor process. However, only SiH elimination and formation of (PMe(3))(3)(CO)Ru(SiR(3))H is observed for 3b-d. The most hindered bis(silyl) complex, 3d, is extremely labile and even in the absence of CO undergoes SiH reductive elimination to generate the 16e(-) species 1 (DeltaH(SiH)(-)(elim) = 11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(elim) = 40 +/- 2 cal x mol(-)(1) x K(-)(1); Delta = 9.2 +/- 0.8 kcal x mol(-)(1) and Delta = 9 +/- 3 cal x mol(-)(1).K(-)(1)). The minimum barrier for the H(2) reductive elimination can be estimated, and is higher than that for silane elimination at temperatures above ca. -50 degrees C. The thermodynamic preferences for oxidative additions to 1 are dominated by entropy contributions and steric effects. Addition of H(2) is by far most favorable, whereas the relative aptitudes for intramolecular silyl CH activation and intermolecular SiH addition are strongly dependent on temperature (DeltaH(SiH)(-)(add) = -11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(add) = -40 +/- 2 cal.mol(-)(1) x K(-)(1); DeltaH(beta)(-CH)(-)(add) = -2.7 +/- 0.3 kcal x mol(-)(1) and DeltaS(beta)(-CH)(-)(add) = -6 +/- 1 cal x mol(-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta = -1.8 +/- 0.8 kcal x mol(-)(1) and Delta = -31 +/- 3 cal x mol(-)(1).K(-)(1); Delta = 16.4 +/- 0.6 kcal x mol(-)(1) and Delta = -13 +/- 6 cal x mol(-)(1).K(-)(1). The relative enthalpies of activation (-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta (H)SiH(add) = 1.8 +/- 0.8 kcal x mol(-)(1) and Delta S((SiH-add) =31+/- 3 cal x mol(-)(1) x K(-)(1); Delta S (SiH -add) = 16.4 +/- 0.6 kcal x mol(-)(1) and =Delta S (SiH -CH -add) =13+/- 6 cal x mol(-)(1) x K(-)(1). The relative enthalpies of activation are interpreted in terms of strong SiH sigma-complex formation - and much weaker CH coordination - in the transition state for oxidative addition.  相似文献   

13.
The reaction of the platinum(II) methyl cation [(N-N)Pt(CH(3))(solv)](+) (N-N = ArN[double bond]C(Me)C(Me)[double bond]NAr, Ar = 2,6-(CH(3))(2)C(6)H(3), solv = H(2)O (1a) or TFE = CF(3)CH(2)OH (1b)) with benzene in TFE/H(2)O solutions cleanly affords the platinum(II) phenyl cation [(N-N)Pt(C(6)H(5))(solv)](+) (2). High-pressure kinetic studies were performed to resolve the mechanism for the entrance of benzene into the coordination sphere. The pressure dependence of the overall second-order rate constant for the reaction resulted in Delta V(++) = -(14.3 +/- 0.6) cm(3) mol(-1). Since the overall second order rate constant k = K(eq)k(2), Delta V(++) = Delta V degrees (K(eq)) + Delta V(++)(k(2)). The thermodynamic parameters for the equilibrium constant between 1a and 1b, K(eq) = [1b][H(2)O]/[1a][TFE] = 8.4 x 10(-4) at 25 degrees C, were found to be Delta H degrees = 13.6 +/- 0.5 kJ mol(-1), Delta S degrees = -10.4 +/- 1.4 J K(-1) mol(-1), and Delta V degrees = -4.8 +/- 0.7 cm(3) mol(-1). Thus DeltaV(++)(k(2)) for the activation of benzene by the TFE solvento complex equals -9.5 +/- 1.3 cm(3) mol(-1). This significantly negative activation volume, along with the negative activation entropy for the coordination of benzene, clearly supports the operation of an associative mechanism.  相似文献   

14.
Combustion calorimetry studies were used to determine the standard molar enthalpies of formation of o-, m-, and p-cresols, at 298.15 K, in the condensed state as Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,cr) = -204.2 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,l) = -196.6 +/- 2.1 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,cr) = -202.2 +/- 3.0 kJ.mol(-1). Calvet drop calorimetric measurements led to the following enthalpy of sublimation and vaporization values at 298.15 K: Delta(sub)H(m) degrees (o-CH(3)C(6)H(4)OH) = 73.74 +/- 0.46 kJ.mol(-1), Delta(vap)H(m) degrees (m-CH(3)C(6)H(4)OH) = 64.96 +/- 0.69 kJ.mol(-1), and Delta(sub)H(m) degrees (p-CH(3)C(6)H(4)OH) = 73.13 +/- 0.56 kJ.mol(-1). From the obtained Delta(f)H(m) degrees (l/cr) and Delta(vap)H(m) degrees /Delta(sub)H(m) degrees values, it was possible to derive Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,g) = -130.5 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,g) = -131.6 +/- 2.2 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,g) = -129.1 +/- 3.1 kJ.mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by the B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3P86/cc-pVDZ, B3P86/cc-pVTZ, MPW1PW91/cc-pVTZ, CBS-QB3, and CCSD/cc-pVDZ//B3LYP/cc-pVTZ methods, were used to obtain the differences between the enthalpy of formation of the phenoxyl radical and the enthalpies of formation of the three methylphenoxyl radicals: Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (o-CH(3)C(6)H(4)O*,g) = 42.2 +/- 2.8 kJ.mol(-1), Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (m-CH(3)C(6)H(4)O*,g) = 36.1 +/- 2.4 kJ.mol(-1), and Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (p-CH(3)C(6)H(4)O*,g) = 38.6 +/- 3.2 kJ.mol(-1). The corresponding differences in O-H bond dissociation enthalpies were also derived as DH degrees (C(6)H(5)O-H) - DH degrees (o-CH(3)C(6)H(4)O-H) = 8.1 +/- 4.0 kJ.mol(-1), DH degrees (C(6)H(5)O-H) - DH degrees (m-CH(3)C(6)H(4)O-H) = 0.9 +/- 3.4 kJ.mol(-1), and DH degrees (C(6)H(5)O-H) - DH degrees (p-CH(3)C(6)H(4)O-H) = 5.9 +/- 4.5 kJ.mol(-1). Based on the differences in Gibbs energies of formation obtained from the enthalpic data mentioned above and from published or calculated entropy values, it is concluded that the relative stability of the cresols varies according to p-cresol < m-cresol < o-cresol, and that of the radicals follows the trend m-methylphenoxyl < p-methylphenoxyl < o-methylphenoxyl. It is also found that these tendencies are enthalpically controlled.  相似文献   

15.
The physical adsorption of formic (HC(O)OH) and acetic (CH(3)C(O)OH) acid on ice was measured as a function of concentration and temperature. At low concentrations, the gas-ice interaction could be analysed by applying Langmuir adsorption isotherms to determine temperature dependent partition constants, K(Lang). Using temperature independent saturation coverages (N(max)) of (2.2 +/- 0.5) x 10(14) molecule cm(-2) and (2.4 +/- 0.6) x 10(14) molecule cm(-2) for HC(O)OH and CH(3)C(O)OH, respectively, we derive K(Lang)(HC(O)OH) = 1.54 x 10(-24) exp (6150/T) and K(Lang)(CH(3)C(O)OH) = 6.55 x 10(-25) exp (6610/T) cm(3) molecule(-1). Via a van't Hoff analysis, adsorption enthalpies were obtained for HC(O)OH and CH(3)C(O)OH. Experiments in which both acids or HC(O)OH and methanol interacted with the ice surface simultaneously were adequately described by competitive adsorption kinetics. The results are compared to previous measurements and used to calculate the equilibrium partitioning of these trace gases to ice surfaces under conditions relevant to the atmosphere.  相似文献   

16.
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.  相似文献   

17.
The effect of a 2,2-ethylene-ketal functionality on the singlet-triplet energy gap (Delta E(ST)) and on the first electronic transition in singlet cyclopentane-1,3-diyls (1) has been investigated. UDFT calculations predict a significant increase in the preference for a singlet ground state in the diradical with the cyclic ketal at C2 (1g; Delta E(ST) = -6.6 kcal/mol in C(2) symmetry and -7.6 kcal/mol in C(2v) symmetry), compared to the 2,2-dihydroxy- and 2,2-dimethoxy-disubstituted diradicals (1d, Delta E(ST) = -3.6 kcal/mol in C(2) symmetry, and 1e, Delta E(ST) = -3.4 kcal/mol in C(2) symmetry). Spiroconjugation is shown to be responsible for the larger calculated value of absolute value Delta E(ST) in 1g, relative to 1d and 1e. A strong correlation between the calculated values of Delta E(ST) and the computed electronic excitation energies of the singlet diradicals is found for diradicals 1d, 1e, and 1g and for 2,2-difluorocyclopentane-1,3-diyl (1c). A similar correlation between Delta E(ST) and lambda(calcd) is predicted for the corresponding 1,3-diphenylcyclopentane-1,3-diyls 3, and the predicted blue shift in the spectrum of 3g, relative to 3e, has been confirmed by experimental comparisons of the electronic absorption spectra of the annelated derivatives 2c, 2e, and 2g in a glass at 77 K. The wavelength of the first absorption band in the singlet diradicals decreases in the order 2e (lambda(onset) = 650 nm) > 2g (lambda(onset) = 590 nm) > 2c (lambda(onset) = 580 nm). The combination of these computational and experimental results provides a sound basis for reassignment of the first electronic absorption band in singlet diradicals 2c, 2e, and 2g to the excitation of an electron from the HOMO to the LUMO of these 2,2-disubstituted derivatives of cyclopentane-1,3-diyl.  相似文献   

18.
Reliable thermochemical data for the reaction SO3 + H2O<-->SO3 x H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3 x H2O complex. The electronic binding energy is accurately computed to De = 40.9+/-1.0 kJ/mol = 9.8+/-0.2 kcal/mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0 = -Delta H(1a)0(0 K) = 7.7+/-0.5 kcal/mol and Delta H(1a)0(298 K) = -8.3+/-1.0 kcal/mol.  相似文献   

19.
The enthalpy of formation of methylhydroxycarbene, CH(3)COH, has been determined from measurements of the threshold energy for collision-induced dissociation of protonated 2,3-butanedione in a flowing afterglow-triple quadrupole mass spectrometer and found to be 16 +/- 4 kcal/mol, 57 +/- 4 kcal/mol higher than that of acetaldehyde. From the measured enthalpy of formation, the difference between the first and second C-H BDEs in ethanol is found to be 17 kcal/mol, which implies a singlet-triplet splitting of 28 kcal/mol in the carbene. The activation energies for loss of ketene and carbon monoxide from protonated butanedione are found to be 60 +/- 4 and 50 +/- 4 kcal/mol, respectively. On the basis of experimental and computational results, the loss of carbon monoxide is proposed to proceed through a tight transition state. Although calculations also suggest a tight transition state for loss of ketene, the experimental data indicate that it occurs via a loose transition state, possibly forming by proton transfer along the direct dissociation pathway.  相似文献   

20.
The heats of formation of saturated and unsaturated diaminocarbenes (imadazol(in)-2-ylidenes) have been calculated by using high levels of ab initio electronic structure theory. The calculations were done at the coupled cluster level through noniterative triple excitations with augmented correlation consistent basis sets up through quadruple. In addition, four other corrections were applied to the frozen core atomization energies: (1) a zero point vibrational correction; (2) a core/valence correlation correction; (3) a scalar relativistic correction; (4) a first-order atomic spin-orbit correction. The value of DeltaHf( 298) for the unsaturated carbene 1 is calculated to be 56.4 kcal/mol. The value of DeltaHf( 298) for the unsaturated triplet carbene (3)1 is calculated to be 142.8 kcal/mol, giving a singlet-triplet splitting of 86.4 kcal/mol. Addition of a proton to 1 forms 3 with DeltaHf( 298)(3) = 171.6 kcal/mol with a proton affinity for 1 of 250.5 kcal/mol at 298 K. Addition of a hydrogen atom to 1 forms 4 with DeltaHf( 298)(4) = 72.7 kcal/mol and a C-H bond energy of 35.8 kcal/mol at 298 K. Addition of H- to 1 gives 5 with DeltaHf( 298)(5) = 81.2 kcal/mol and 5 is not stable with respect to loss of an electron to form 4. Addition of H2 to the carbene center forms 6 with DeltaHf( 298)(6) = 41.5 kcal/mol and a heat of hydrogenation at 298 K of -14.9 kcal/mol. The value of DeltaHf( 298) for the saturated carbene 7 (obtained by adding H2 to the C=C bond of 1) is 47.4 kcal/mol. Hydrogenation of 7 to form the fully saturated imidazolidine, 8, gives DeltaHf( 298)(8) = 14.8 kcal/mol and a heat of hydrogenation at 298 K of -32.6 kcal/mol. The estimated error bars for the calculated heats of formation are +/-1.0 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号