首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated a variant of desorption/ionization on porous silicon (DIOS) mass spectrometry utilizing an aqueous suspension of either porous silica gel or porous alumina (pore size of 60 and 90 A, respectively). Laser desorption/ionization (LDI) from samples directly deposited on a stainless steel surface without any inorganic substrates was also achieved. Synthetic peptides designed to cover large sequence diversity constituted our model compounds. Sample preparation, including material conditioning, peptide solubilization, and deposition protocol onto standard matrix-assisted laser desorption/ionization (MALDI) probe, as well as ionization source tuning were optimized to perform sensitive reproducible LDI analyses. The addition of either a cationizing agent or an alkali metal scavenger to the sample suspension allowed modification of the ionization output. Comparing hydrophilic silica gel to hydrophobic reversed-phase silica gel as well as increasing material pore size provided further insights into desorption/ionization processes. Furthermore, mixtures of peptides were analyzed to probe the spectral suppression phenomenon when no interfering organic matrix was present. The results gathered from synthetic peptide cocktails indicated that LDI mass spectrometry on silica gel or alumina constitutes a promising complementary method to MALDI in proteomics for peptide mass fingerprinting.  相似文献   

2.
Through analyzing mixtures of compounds of known gas-phase basicities, the importance of this property on the secondary ions emitted from a surface under primary ion bombardment is investigated. The aim is to obtain a greater understanding of the ionization mechanisms that occur in secondary ion mass spectrometry (SIMS). The commonly used matrix assisted laser desorption/ionization (MALDI) matrix 2,4,6-trihydroxyacetophenone (THAP) and a range of low molecular weight biomolecules were used to investigate whether analyte/matrix suppression effects that have been observed in analogous MALDI experiments were also present in static-SIMS. The outcome of the experiments demonstrates that strong suppression of the quasi-molecular signal of one molecule in a mixture can occur due to the presence of the other, with the gas-phase basicity of the compounds being a good indicator of the secondary ions detected. It is also demonstrated that the suppression of the quasi-molecular ion signal of a compound in a two-component mixture can be minimized by the inclusion of a third compound of suitable gas-phase basicity.  相似文献   

3.
Monovalent cations often associate with peptides and proteins under mass spectrometry (MS) conditions, resulting in a discernable, but often misleading, adduct cluster pattern. These adduct cluster peaks reduce the signal intensity of specific peptide species by splitting the ion population into multiple mass peaks, suppressing the ionization of neighboring low-abundance peaks, and interfering with identification of post-translational modifications. Further, monovalent contaminants tend to form a distribution of matrix cluster peaks in matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) spectra causing interference and suppression in the mass range below 1400 Da. The most common method for reduction or elimination of adduct clusters is solid-phase extraction via a pipette tip or spin column, which often leads to loss of low-abundance peptide components. In this study we describe the use of a commercially available surfactant blend that markedly reduces the adduction of monovalent cations during peptide analysis by MALDI-TOFMS.  相似文献   

4.
In the past two years, papers have appeared in the literature which demonstrate that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra can be obtained from matrix-analyte preparations which have been produced by grinding the two materials together until a powder of small particle size is obtained. In the present study that methodology was modified and applied to an insoluble polyimide oligomer, poly(4,4'-oxydiphenylenepyromellitimide) (POPM). Two matrix materials were employed in this analysis, 1,8 dihydroxyanthrone (dithranol) and 3-aminoquinoline, with and without an additional cationizing agent. The spectra obtained by this method are shown to be sensitive to the matrix employed in the analysis as well as the quantity of cationizing agent combined with the matrix.  相似文献   

5.
Despite the advantages of simplicity and high-throughput detection that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has over other methods, quantitative analysis of low-molecular-weight analyte is hampered by interference from matrix-derived background noise and signal fluctuation due to the inhomogeneous MALDI sample surface. Taking advantage of improved sample homogeneity through matrix-conjugated magnetic nanoparticles (matrix@MNP) and the seed-layer method, we report a new strategy for the rapid identification and quantification of drugs in urine samples, using morphine and 7-aminoflunitrazepam (7-aminoFM2) as model compounds. To our knowledge, this is the first attempt using the seed-layer method for small molecule analysis. By applying the proposed seed-layer method, which was specifically optimized for the 2,5-dihydroxybenzoic acid@MNP (DHB@MNP) matrix, homogeneous sample crystallization examined by microscopy analysis was obtained that generated reproducible MALDI signals (RSD<10.0%). For urine sample analysis, simple liquid-liquid extraction as a sample pretreatment step effectively reduced the ion suppression effect caused by the endogenous components in urine; good recoveries (82-90%) were obtained with a small ion suppression effect (<14% of signal decrease). This newly developed method demonstrated good quantitation linearity over a range of 50-2000 ng mL(-1) (R(2)>0.996) with reduced signal variation (RSD<10.0%). The detection limit is 30 ng mL(-1) with good precision (intra-day, 2.0-9.3%; inter-day, 5.0-10.0%) and accuracy (intra-day, 95.0-106.0%; inter-day, 103.0-115.5%). The nanoparticle-assisted MALDI-TOF MS combined with seed-layer surface preparation provides a rapid, efficient and accurate platform for the quantification of small molecules in urine samples.  相似文献   

6.
Halohydrination of epoxy resins using sodium halides as cationizing agents in matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon mass spectrometry (DIOS-MS) were investigated. Different mass spectra were observed when NaClO(4) and NaI were used as the cationizing agents at the highest concentration of 10.0 mM, which is much higher than that normally used in MALDI-MS. MALDI mass spectra of epoxy resins using NaI revealed iodohydrination to occur as epoxy functions of the polymers. The halohydrination also occurred using NaBr, but not NaCl, due to the differences in their nucleophilicities. On the basis of the results of experiments using deuterated CD(3)OD as the solvent, the hydrogen atom source was probably ambient water or residual solvent, rather than being derived from matrices. Halohydrination also occurred with DIOS-MS in which no organic matrix was used; in addition, reduction of epoxy functions was observed with DIOS. NaI is a useful cationizing agent for changing the chemical form of epoxy resins due to iodohydrination and, thus, for identifying the presence of epoxy functions.  相似文献   

7.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We report the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the accurate measurement of mass of low molecular weight compounds (smaller than 1500 Da), a linear peptide, two types of cyclic depsipeptides, a polyhydroxy-macrocyclic lactone, and two prenylated flavonoids, with delayed extraction in the reflector mode. The performance of the MALDI-TOF instrument was less than those of fast atom bombardment and Fourier-transform ion cyclotron resonance mass spectrometry instruments and insufficient to give acceptable accuracy for literature reporting. Nevertheless, when combined with NMR spectrometry and/or amino acid analysis to give information on the numbers of carbon atoms and index of hydrogen deficiency, MALDI was useful for determination of the elemental composition of the low molecular weight compounds available in small quantities.  相似文献   

9.
Residual acrylamide can cause severe suppression of signal intensity during matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping experiments. This suppression phenomenon can compromise the ability to detect low picomole and subpicomolar amounts of peptides extracted from two-dimensional gels. A rapid and simple method that exploits the use of pipette tips incorporating C18 packing materials for the enhancement of MALDI signal intensity is presented. The utility of the method is demonstrated with peptide solutions incorporating residual acrylamide and/or gel monomer components.  相似文献   

10.
Tong H  Sze N  Thomson B  Nacson S  Pawliszyn J 《The Analyst》2002,127(9):1207-1210
Solid phase microextraction (SPME) with matrix assisted laser desorption/ionization (MALDI) introduction was coupled to mass spectrometry and ion mobility spectrometry. Nicotine and myoglobin in matrix 2,5-dihydroxybenzonic acid (DHB), enkephalin and substance P in alpha-cyano-4-hydroxy cinnaminic acid were investigated as the target compounds. The tip of an optical fiber was silanized for extraction of the analytes of interest from solution. The optical fiber thus served as the sample extraction surface, the support for the sample plus matrix, and the optical pipe to transfer the laser energy from the laser to the sample. The MALDI worked under atmospheric pressure, and both an ion mobility spectrometer and a quadrupole/time-of-flight mass spectrometer were used for the detection of the SPME/MALDI signal. The spectra obtained demonstrate the feasibility of the SPME with MALDI introduction to mass spectrometry instrumentation.  相似文献   

11.
Qualitative and quantitative analysis of post‐translational protein modifications by mass spectrometry is often hampered by changes in the ionization/detection efficiencies caused by amino acid modifications. This paper reports a comprehensive study of the influence of phosphorylation and methylation on the responsiveness of peptides to matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry. Using well‐characterized synthetic peptide mixtures consisting of modified peptides and their unmodified analogs, relative ionization/detection efficiencies of phosphorylated, monomethylated, and dimethylated peptides were determined. Our results clearly confirm that the ion yields are generally lower and the signal intensities are reduced with phosphopeptides than with their nonphosphorylated analogs and that this has to be taken into account in MALDI and ESI mass spectrometry. However, the average reduction of ion yield caused by phosphorylation is more pronounced with MALDI than with ESI. The unpredictable impact of phosphorylation does not depend on the hydrophobicity and net charge of the peptide, indicating that reliable quantification of phosphorylation by mass spectrometry requires the use of internal standards. In contrast to phosphorylation, mono‐ and dimethylated peptides frequently exhibit increased signal intensities in MALDI mass spectrometry (MALDI‐MS). Despite minor matrix‐dependent variability, MALDI methods are well suited for the sensitive detection of dimethylated arginine and lysine peptides. Mono‐ and dimethylation of the arginine guanidino group did not significantly influence the ionization efficiency of peptides in ESI‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Cysteine sulfonic acid-containing peptides, being typical acidic peptides, exhibit low response in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In this study, matrix conditions and the effect of diammonium hydrogencitrate (DAHC) as additive were investigated for ionization of cysteine sulfonic acid-containing peptides in MALDI. A matrix-free ionization method, desorption/ionization on porous silicon (DIOS), was also utilized to evaluate the effect of DAHC. When equimolar three-component mixtures of peptides carrying free cysteine, cysteine sulfonic acid, and carbamidomethyl cysteine were measured by MALDI using a common matrix, alpha-cyano-4-hydroxycinnamic acid (CHCA), no signal corresponding to cysteine sulfonic acid-containing peptide could be observed in the mass spectrum. However, by addition of DAHC to CHCA, the peaks of cysteine sulfonic acid-containing peptides were successfully observed, as well as when using 2,4,6-trihydroxyacetophenone (THAP) and 2,6-dihydroxyacetophenone with DAHC. In the DIOS mass spectra of these analytes, the use of DAHC also enhanced the peak intensity of the cysteine sulfonic acid-containing peptides. On the basis of studies with these model peptides, tryptic digests of oxidized peroxiredoxin 6 were examined as a complex peptide mixture by MALDI and DIOS. In MALDI, the peaks of cysteine sulfonic acid-containing peptides were observed when using THAP/DAHC as the matrix, but this was not so with CHCA. In DIOS, the signal from cysteine sulfonic acid-containing peptides was suppressed; however, the use of DAHC significantly enhanced the signal intensity with an increase in the number of observed peptides and increased signal-to-noise ratio in the DIOS spectra. The results show that DAHC in the matrix or on the DIOS chip decreases discrimination and suppression effects in addition to suppressing alkali-adduct ions, which leads to a beneficial effect on protonation of peptides containing cysteine sulfonic acid.  相似文献   

13.
We have employed a light-absorbing electrically conductive polymer as a matrix to determine the molecular mass of small organic molecules using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This method, which is in contrast to the usual MALDI strategy for matrix selection in which a small molecule matrix is used with a high molecular mass analyte, addresses the problem of matrix interference which limits the usefulness of MALDI-TOF for small molecule analysis. Use of negative ion mode offers advantages for this application. Using this approach, we have obtained clean molecular ion mass spectra of small organic molecules in the mass range 100-300 Da.  相似文献   

14.
Peaks originating from unknown compounds on stainless steel plates used in matrix-assisted laser desorption/ionization (MALDI) mass spectrometers are observed around m/z 304.3, 332.3, 360.4, and 388.4 regardless of the matrix and/or solvent, and are even observed with bare plates. These peaks were characterized using three different types of MALDI-MS instrumentation: MALDI-TOF MS, MALDI-TOF/TOF MS, and MALDI-FTMS. The fragmentation data from MALDI-TOF/TOF MS and accurate mass determination by MALDI-FTMS enabled identification of the chemical formulae and structures. The unknown compounds are, in fact, likely benzylalkylmethylammonium salts, as confirmed by closely matching fragmentation patterns with a commercially available benzalkonium chloride.  相似文献   

15.
A possibility of using tryptamine as a reactive matrix for the analysis of non-polar carbonyl compounds by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has been shown. Presence of a terminal primary amine group in the tryptamine molecule predetermines the formation of Schiff bases from aliphatic and alicyclic carbonyl compounds. No additional matrix compounds are necessary to register MALDI mass spectra, because the excess of the derivatization agent plays the role of a matrix. MALDI mass spectra demonstrate high efficiency of desorption/ionization of the derivatives. To discover reactive matrices, a set of aromatic primary amines (mainly substituted anilines) has been tested, but they have not demonstrated matrix properties.  相似文献   

16.
Matrix‐assisted laser desorption/ionization (MALDI) is a mass spectrometry (MS) ionization technique suitable for a wide variety of sample types including highly complex ones such as natural resinous materials. Coupled with Fourier transform ion cyclotron resonance (FT‐ICR) mass analyser, which provides mass spectra with high resolution and accuracy, the method gives a wealth of information about the composition of the sample. One of the key aspects in MALDI‐MS is the right choice of matrix compound. We have previously demonstrated that 2,5‐dihydroxybenzoic acid is suitable for the positive ion mode analysis of resinous samples. However, 2,5‐dihydroxybenzoic acid was found to be unsuitable for the analysis of these samples in the negative ion mode. The second problem addressed was the limited choice of calibration standards offering a flexible selection of m/z values under m/z 1000. This study presents a modified MALDI‐FT‐ICR‐MS method for the analysis of resinous materials, which incorporates a novel matrix compound, 2‐aminoacridine for the negative ion mode analysis and extends the selection of internal standards with m/z <1000 for both positive (15 different phosphazenium cations) and negative (anions of four fluorine‐rich sulpho‐compounds) ion mode. The novel internal calibration compounds and matrix material were tested for the analysis of various natural resins and real‐life varnish samples taken from cultural heritage objects. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
To enhance sample signals and improve homogeneity in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis, a simple, rapid, and efficient sample preparation method was developed in this study. Polydimethylsiloxane (PDMS) was coated on a stainless steel MALDI plate, forming a transparent, hydrophobic surface that enhanced sample signals without producing observable background signals. Compared to the use of an unmodified commercial metal MALDI plate, peptide signals were enhanced by ~7.1–11.0-fold due to the reduced sample spot area of the PDMS-coated plate, and showed improved peptide mass fingerprinting (PMF) and MS/MS peptide sequencing results. In the analysis of phosphopeptides and carbohydrates with a 2,5-dihydroxybenzoic acid (DHB) matrix, the PDMS-coated plate showed improved sample homogeneity and signal enhancements of ~5.2–8.2-fold and ~2.8–3.2-fold, respectively. Improved sensitivity in the observation of more unique fragment ions by MS/MS analysis, to successfully distinguish isomeric carbohydrates, was also illustrated. In protein analysis with a sinapinic acid (SA) matrix, a ~3.4-fold signal enhancement was observed. The PDMS film coating was easily removed and refabricated to avoid sample carryover, and was applicable to diverse commercial MALDI plates. The PDMS-coated approach is a simple, practical, and attractive method for enhancing analyte signals and homogeneity.  相似文献   

18.
A novel quadrupole ion trap mass spectrometer laser microprobe instrument with an external ionization source was constructed and used to investigate the matrix-assisted laser desorption/ionization (MALDI) detection of pharmaceutical compounds in intact tissue. In addition to MALDI, laser desorption coupled with chemical ionization (LD/CI) was investigated. MALDI, using 2,5-dihydroxybenezoic acid (DHB) as a matrix, was employed to detect the anticancer drug paclitaxel from a thin section of rat liver tissue which had been incubated in a solution of paclitaxel. The results of that experiment showed that the ability to perform tandem mass spectrometry (MS/MS) with the quadrupole ion trap was crucial in the identification of drug compounds at trace levels in the complex tissue matrix. MALDI MS/MS was then used to detect the presence of paclitaxel in a human ovarian tumor at a concentration of approximately 50 mg/kg. Finally, the drug spiperone was detected in incubated rat liver tissue at an approximate level of 25 mg/kg using LD/CI (no MALDI matrix). Again, the MS/MS capability of the quadrupole ion trap was crucial in the identification of the drug at trace levels in the complex tissue matrix.  相似文献   

19.
Comprehensive analysis of high‐resolution mass spectra of aged natural dammar resin obtained with Fourier transform ion cyclotron resonance mass spectrometer (FT‐ICR‐MS) using matrix‐assisted laser desorption/ionization (MALDI) and atmospheric pressure chemical ionization (APCI) is presented. Dammar resin is one of the most important components of painting varnishes. Dammar resin is a terpenoid resin (dominated by triterpenoids) with intrinsically very complex composition. This complexity further increases with aging. Ten different solvents and two‐component solvent mixtures were tested for sample preparation. The most suitable solvent mixtures for the MALDI‐FT‐ICR‐MS analysis were dichloromethane‐acetone and dichloromethane‐ethanol. The obtained MALDI‐FTMS mass spectrum contains nine clusters of peaks in the m/z range of 420–2200, and the obtained APCI‐FTMS mass spectrum contains three clusters of peaks in the m/z range of 380–910. The peaks in the clusters correspond to the oxygenated derivatives of terpenoids differing by the number of C15H24 units. The clusters, in turn, are composed of subclusters differing by the number of oxygen atoms in the molecules. Thorough analysis and identification of the components (or groups of components) by their accurate m/z ratios was carried out, and molecular formulas (elemental compositions) of all major peaks in the MALDI‐FTMS and APCI‐FTMS spectra were identified (and groups of possible isomeric compounds were proposed). In the MALDI‐FTMS and APCI‐FTMS mass spectrum, besides the oxidized C30, triterpenoids also peaks corresponding to C29 and C31 derivatives of triterpenoids (demethylated and methylated, correspondingly) were detected. MALDI and APCI are complementary ionization sources for the analysis of natural dammar resin. In the MALDI source, preferably polar (extensively oxidized) components of the resin are ionized (mostly as Na+ adducts), whereas in the APCI source, preferably nonpolar (hydrocarbon and slightly oxidized) compounds are ionized (by protonation). Either of the two ionization methods, when used alone, gives an incomplete picture of the dammar resin composition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Traditional matrix does not allow matrix-assisted laser desorption/ionization mass spectrometry(MALDI MS) to analyze volatile compounds,because volatile analytes may vaporize during the sample preparation process or in the high vacuum circumstance of ion source.Herein,we reported a Co and N doped porous carbon material(Co-NC) which were synthesized by pyrolysis of a Schiff base coordination compound.Co-NC could simultaneously act as adsorbent of volatile compounds and as matrix of MALDI MS,to provide the capability of MALDI MS to analyze volatile compounds.As adsorbent,Co-NC could stro ngly adsorb and enrich the volatile compounds in perfume and herbs,and hold them even in the high vacuum circumstance.On the other hand,Co-NC could absorb the energy of the laser,and then transfer the energy to the analyte for desorption and ionization of analyte in both negative and positive ionization modes.Additionally,the background interferences were avoided in the low-mass region(<500 Da) when using Co-NC as matrix,overcoming the challenges of MALDI MS analysis of small molecule compounds.In summary,Co-NC as matrix tremendously extended the application of MALDI MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号