首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tensor-force effects on the evolution of spin-orbit splittings in neutron drops are investigated within the framework of the relativistic Hartree-Fock theory.For a fair comparison on the pure mean-field level,the results of the relativistic Brueckner-Hartree-Fock calculation with the Bonn A interaction are adopted as meta-data.Through a quantitative analysis,we certify that the π-psendovector(π-PV) coupling affects the evolutionary trend through the embedded tensor force.The strength of the tensor force is explored by enlarging the strength f_π of the π-PV coupling.It is found that weakening the density dependence of f_π is slightly better than enlarging it with a factor.We thus provide a semiquantitative support for the renormalization persistency of the tensor force within the framework of density functional theory.This will serve as important guidance for further development of relativistic effective interactions with particular focus on the tensor force.  相似文献   

2.
The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier’s doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.  相似文献   

3.
We present a method of analyzing the non-uniformity in electrical characteristics of HgCdTe photodiode arrays for infrared imaging applications. We have selected dynamic resistance–voltage (RV) characteristics for analyzing electrical behavior of HgCdTe photodiodes because the dynamic resistance at a given operating voltage directly governs the imager performance and being derivative of current–voltage (I–V) characteristics, it has little impact of the constant shifts due to stray illumination during dark measurements, relaxing the stringent requirement of perfect dark conditions to some extent for performance analysis. We have demonstrated that by using statistical analysis such as correlation of the selected signatures and their principal component analysis, we can identify the root cause of the high non-uniformity among sensor pixels in the array. The method has been implemented using theoretical IV model of MWIR HgCdTe photodiodes, but it is generic and may be implemented on any other types of diode arrays for theoretical or experimental analysis of their non-uniformity.  相似文献   

4.

Purpose

The articular cartilage is a small tissue with a matrix structure of three layers between which the orientation of collagen fiber differs. A diffusion-weighted twice-refocused spin-echo echo-planar imaging (SE-EPI) sequence was optimized for the articular cartilage, and the structure of the three layers of human articular cartilage was imaged in vivo from diffusion tensor images.

Materials and Methods

The subjects imaged were five specimens of swine femur head after removal of the flesh around the knee joint, five specimens of swine articular cartilage with flesh present and the knee cartilage of five adult male volunteers. Based on diffusion-weighted images in six directions, the mean diffusivity (MD) and the fractional anisotropy (FA) values were calculated.

Results

Diffusion tensor images of the articular cartilage were obtained by sequence optimization. The MD and FA value of the specimens (each of five examples) under different conditions were estimated. Although the articular cartilage is a small tissue, the matrix structure of each layer in the articular cartilage was obtained by SE-EPI sequence with GRAPPA. The MD and FA values of swine articular cartilage are different between the synovial fluid and saline. In human articular cartilage, the load of the body weight on the knee had an effect on the FA value of the surface layer of the articular cartilage.

Conclusion

This method can be used to create images of the articular cartilage structure, not only in vitro but also in vivo. Therefore, it is suggested that this method should support the elucidation of the in vivo structure and function of the knee joint and might be applied to clinical practice.  相似文献   

5.
Moyamoya disease (MMD) is a rare disorder of unknown etiology in which terminal portions of the internal carotid arteries become steno-occlusive, with fine collateral "moyamoya vessels" formed secondarily, resulting in serial ischemic strokes throughout its clinical course. Whole-brain histogram (WBH) of diffusion tensor imaging (WBH-DTI) is an analytical tool whose feasibility has been ascertained in various pathologies. To elucidate whether WBH-DTI could detect any difference between ischemic MMD and normal controls, we examined 27 consecutive MMD patients without hemorrhage and 48 normal controls in this prospective study using a 3.0-T magnetic resonance scanner. WBHs of fractional anisotropy (FA) (WBH-FA) and mean diffusivity (MD) (WBH-MD) were compared among three groups: Group 1, MMD patients with infarct (n=15); Group 2, MMD patients without infarct (n=12); and Group 3, normal controls (n=48). Group 1 showed significantly higher peak height and significantly lower mean value on WBH-FA, as well as significantly lower peak height and significantly higher mean value on WBH-MD, compared with Groups 2 and 3. No significant difference was seen in parameters at either WBH-FA or WBH-MD between Groups 2 and 3. These results might reflect the pathological severity of each group, and WBH-DTI could feasibly detect differences between ischemic MMD with infarction and MMD without infarction and normal controls.  相似文献   

6.
The effect of susceptibility differences between fluid and fibers on the properties of DTI fiber phantoms was investigated. Thereto, machine-made, easily producible and inexpensive DTI fiber phantoms were constructed by winding polyamide fibers of 15 microm diameter around a circular acrylic glass spindle. The achieved fractional anisotropy was 0.78+/-0.02. It is shown by phantom measurements and Monte Carlo simulations that the transversal relaxation time T(2) strongly depends on the angle between the fibers and the B(0) field if the susceptibilities of the fibers and fluid are not identical. In the phantoms, the measured T(2) time at 3 T decreased by 60% for fibers running perpendicular to B(0). Monte Carlo simulations confirmed this result and revealed that the exact relaxation time depends strongly on the exact packing of the fibers. In the phantoms, the measured diffusion was independent of fiber orientation. Monte Carlo simulations revealed that the measured diffusion strongly depends on the exact fiber packing and that field strength and -orientation dependencies of measured diffusion may be minimal for hexagonal packing while the diffusion can be underestimated by more than 50% for cubic packing at 3 T. To overcome these effects, the susceptibilities of fibers and fluid were matched using an aqueous sodium chloride solution (83 g NaCl per kilogram of water). This enables an orientation independent and reliable use of DTI phantoms for evaluation purposes.  相似文献   

7.
The optimal diffusion weighting (DW) factor, b, for use in diffusion tensor imaging (DTI) studies remains uncertain. In this study, the geometric relations of DW quantities are examined, in particular, the effects of Rician noise in the measured magnetic resonance signal. This geometric analysis is used to make theoretical predictions for selecting a b value to reduce the influence of noise. It is shown that the optimal b value for DTI studies in healthy human parenchyma is approximately b=1200 s mm−2, with a simple relation given as well for a given expected apparent diffusion coefficient. Monte-Carlo simulations on sets of realistic DTI measures are then performed, verifying the optimal DW for minimizing estimate errors. The effects of noise on various DTI parameters such as anisotropy indices (fractional anisotropy and scaled relative anisotropy), mean diffusivity, radial diffusivity, eigenvalues and the direction of the first eigenvector are investigated as well.  相似文献   

8.
Glaucoma is an optic neuropathy affecting the entire visual system. The understanding of the glaucoma mechanism and causes remains unresolved. Diffusion tensor imaging (DTI) has been used to analyze the optic nerve and optic radiation showing global fiber abnormalities associated with glaucoma. Nevertheless, the complex structure of the optic radiation and the limitations of DTI make the localization of the glaucoma effect a difficult task. The aim of this work is to establish a framework for the determination of the local changes of the optic radiation due to glaucoma using DTI. The proposed system utilizes a semiautomated algorithm to produce an efficient identification of the optic radiation. Segmented optic radiations are transformed to a unified space using shape-based nonrigid registration. Using the deformation fields that resulted from the registration, the maps of the diffusion tensor-derived parameters are transformed to the unified space. This allows for statistical voxel-wise analysis to produce significant abnormality maps. The proposed system is applied to a group of 13 glaucoma patients and a normal control group of 10 subjects. The groups are age matched to eliminate the age effect on the analysis. Diffusion-related parameters (axial, radial and mean diffusivities) and an anisotropy index (fractional anisotropy) are studied. The anisotropy analysis indicates that the majority of the significant voxels show decreased fractional anisotropy in the glaucoma patients compared with the control group. In addition, the significant regions are mainly distributed in the middle (in reference to anterior–posterior orientation) of the optic radiation. Glaucoma subjects have increased radial diffusivity and mean diffusivity significant voxels with a main concentration in the proximal part of the right optic radiation. The proposed analysis provides a framework to capture the significant local changes of the optic radiation due to glaucoma. The preliminary analysis suggests that the glaucomatous optic radiation may suffer from localized white matter degeneration. The framework facilitates further studies and understanding of the pathophysiology of glaucoma.  相似文献   

9.

Background

The diagnosis and management of mild traumatic brain injury (MTBI) continue to be subjects of debate, with varying opinions regarding the extent to which tissue-based impairments versus the impacts of other stressors cause ongoing disability. Detecting areas of the brain with abnormalities that can explain symptoms and behavior in patients with MTBI is important in order to confirm the diagnosis of MTBI.

Methods

In this study, we calculated diffusion maps from results of diffusion tensor imaging (DTI) performed in an apparently healthy control group. We then compared these maps with those of patients with MTBI (MTBI group) or diffuse axonal injury (DAI group). All diffusion maps were normalized to the International Consortium for Brain Mapping atlas for atlas-based analysis and were segmented and normalized by the Diffeomorphic Anatomical Registration Through Exponentiated Lie tool in SPM8 to reduce misregistration.

Results

All diffusion measures in the DAI group were lower than in the control group. There were significant differences in the body and splenium of the corpus callosum, fornix and right cerebral peduncle in the DAI group compared with the control group (P<.001). The MTBI group had higher axial diffusivity than the control group in the right corticospinal tract, left medial lemniscus, left inferior cerebellar peduncle, bilateral anterior limb of the internal capsule, right anterior corona radiata, bilateral cingulum (cingulate gyrus) and left superior frontooccipital fasciculus (P<.05).

Conclusions

Voxel- and atlas-based analysis of DTI might suggest that patients with MTBI have focal axonal injury and that the pathophysiology is significantly different from that of DAI. These findings will help in the diagnosis of patients with MTBI.  相似文献   

10.
In this study, we present two different methods of multivariate analysis of voxel-based diffusion tensor imaging (DTI) data, using as an example data derived from 59 professional boxers and 12 age-matched controls. Conventional univariate analysis ignores much of the diffusion information contained in the tensor. Our first multivariate method uses the Hotelling's T2 statistic and the second uses linear discriminant analysis to generate the linear discriminant function at each voxel to form a separability metric. Both multivariate methods confirm the findings from the individual metrics of large-scale changes in the bilateral inferior temporal gyri of the boxers, but they also reveal greater sensitivity as well as identifying major subcortical changes that had not been evident in the univariate analyses. Linear discriminant analysis has the added strength of providing a quantitative measure of the relative contribution of each metric to any differences between the two subject groups. This novel adaptation of statistical and mathematical techniques to neuroimaging analysis is important for two reasons. Clinically, it develops the findings of a previous mild head injury study, and, methodologically, it could equally well be applied to multivariate studies of other pathologies.  相似文献   

11.

Objective

The pathological changes in Parkinson disease begin in the brainstem; reach the limbic system and ultimately spread to the cerebral cortex. In Parkinson disease (PD) patients, we evaluated the alteration of cingulate fibers, which comprise part of the limbic system, by using diffusional kurtosis imaging (DKI).

Methods

Seventeen patients with PD and 15 age-matched healthy controls underwent DKI with a 3-T MR imager. Diffusion tensor tractography images of the anterior and posterior cingulum were generated. The mean kurtosis (MK) and conventional diffusion tensor parameters measured along the images in the anterior and posterior cingulum were compared between the groups. Receiver operating characteristic (ROC) analysis was also performed to compare the diagnostic abilities of the MK and conventional diffusion tensor parameters.

Results

The MK and fractional anisotropy (FA) in the anterior cingulum were significantly lower in PD patients than in healthy controls. The area under the ROC curve was 0.912 for MK and 0.747 for FA in the anterior cingulum. MK in the anterior cingulum had the best diagnostic performance (mean cutoff, 0.967; sensitivity, 0.87; specificity, 0.94).

Conclusions

DKI can detect alterations of the anterior cingulum in PD patients more sensitively than can conventional diffusion tensor imaging. Use of DKI can be expected to improve the ability to diagnose PD.  相似文献   

12.
The orientation dependence in space of Raman‐active vibrations in the hexagonal structure of polyoxymethylene (POM) is discussed in terms of Raman tensor elements as intrinsic physical parameters of the lattice. The variation of polarized intensity for the A1 and the E1 vibrational modes with respect to the POM molecular orientation is systematically studied, from both theoretical and experimental viewpoints, according to the symmetry assignments of each vibrational mode. A set of working equations including the Raman selection rules associated with the A1 and the E1 modes and the orientation distribution function are explicitly formulated and validated by means of a least‐square fitting procedure on experimental data. In addition, an approach based on the introduction of orientation distribution functions is applied to quantitatively assess and compare on a statistical base the molecular orientation of two different types of electrospun POM nanofibers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.

Introduction

Diffusion tensor imaging (DTI) provides comprehensive information about quantitative diffusion and connectivity in the human brain. Transformation into stereotactic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The objective of the present study was to optimize technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level.

Methods

Different averaging methods for mean diffusion-weighted images containing DTI information were compared, i.e., region of interest-based fractional anisotropy (FA) mapping, fiber tracking (FT) and corresponding tractwise FA statistics (TFAS). The novel technique of intersubject FT that takes into account directional information of single data sets during the FT process was compared to standard FT techniques. Application of the methods was shown in the comparison of normal subjects and subjects with defined white matter pathology (alterations of the corpus callosum).

Results

Fiber tracking was applied to averaged data sets and showed similar results compared with FT on single subject data. The application of TFAS to averaged data showed averaged FA values around 0.4 for normal controls. The values were in the range of the standard deviation for averaged FA values for TFAS applied to single subject data. These results were independent of the applied averaging technique. A significant reduction of the averaged FA values was found in comparison to TFAS applied to data from subjects with defined white matter pathology (FA around 0.2).

Conclusion

The applicability of FT techniques in the analysis of different subjects at the group level was demonstrated. Group comparisons as well as FT on group averaged data were shown to be feasible. The objective of this work was to identify the most appropriate method for intersubject averaging and group comparison which incorporates intersubject variability of the directional information.  相似文献   

14.
The characterization of dielectric materials in space environment requires to understand and predict their electric behaviour, taking into account ionisation, and ageing effect (through electron or UV radiation, thermal cycling, …)For this purpose, new methods have been developed for the characterisation and qualification of space materials and satellite structure. These studies led initially to the development of dedicated facilities for the simulation of representative irradiation conditions. This work is focused on a new non-disturbing technique for the measurement of charge distribution within space irradiated polymers. This technique named PEA (Pulsed Electro-Acoustic) has been implemented in the irradiation facility for in-situ and real time measurement during irradiation and relaxation of polymer materials. Implementation and validation of this technique are presented and discussed in this paper.  相似文献   

15.
Age-related microstructural changes in brain white matter can be studied by utilizing indices derived from diffusion tensor imaging (DTI): apparent diffusion coefficient (ADC) and fractional anisotropy (FA). The objective of this study is to examine alterations in FA and ADC by employing exploratory voxel-based analysis (VBA) and region(s) of interest (ROI)-based analysis. A highly nonlinear registration algorithm was used to align the ADC and FA image volumes of different subjects to perform accurate voxel-level statistics for two age groups, as well as for hemispheric asymmetry for both age groups. VBA shows significant age-related decline in FA with frontal predominance (frontal white matter, and genu and anterior body of the corpus callosum), superior portions of a splenium and highly oriented fibers of the posterior limb of the internal capsule and the anterior and posterior limbs of the external capsule. Hemispheric asymmetry of FA, as assessed by VBA, showed that for the young-age group, significant right-greater-than-left asymmetry exists in the genu, splenium and body of the corpus callosum and that left-greater-than-right asymmetry exists in the anterior limb of the external capsule and in the posterior limb of the internal capsule, thalamus, cerebral peduncle and temporal-parietal regions. VBA of the hemispheric asymmetry of the middle-age group revealed much less asymmetry. Regions showing age-related changes and hemispheric asymmetry from VBA were, for a majority of the findings, in conformance with ROI analysis and with the known pattern of development and age-related degradation of fiber tracks. The study shows the feasibility of the VBA of DTI indices for exploratory investigations of subtle differences in population cohorts, especially when findings are not localized and/or known a priori.  相似文献   

16.
易洲  张丽丽  李华 《物理学报》2015,64(5):56101-056101
准弹性中子散射(quasi-elastic neutron scattering, QENS)实验是研究水泥老化过程中水动态的一种新颖的实验方法.本文利用老化时间分别为7, 14和30 d水泥样品的QENS谱实验数据, 通过应用四个高斯项的和的能量分辨函数R(Q, E)代替一个高斯项的能量分辨函数来改进经验扩散模型(empirical diffusion model, EDM), 再进行非线性最小二乘拟合.由此导出水泥样品中水动态的相关物理参数: 不动水数密度A, 自由水指数FWI=B1/(A+B1+B2), 洛伦兹函数的半高宽Γ, 移动水跳跃之间的平均停留时间τ 0及自扩散系数Dt, 而且可得出更为精准的QENS谱拟合曲线.拟合得到的物理参数可定量描述水泥老化过程中水动态过程, 从而为QENS实验在水泥老化过程中水动态研究的应用提供一种合理实用的谱分析方法.  相似文献   

17.
A modified C-band technique was developed in order to analyze more accurately dicentric, tricentric, and ring chromosomes in irradiated human peripheral lymphocytes. Instead of the original method relying on treatment with barium hydroxide Ba(OH)2, C-bands were obtained using a modified form of heat treatment in formamide followed with DAPI staining. This method was tentatively applied to the analysis of dicentric chromosomes in irradiated human lymphocytes to examine its availability. The frequency of dicentric chromosome was almost the same with conventional Giemsa staining and the modified C-band technique. In the analysis using Giemsa staining, it is relatively difficult to identify the centromere on the elongated chromosomes, over-condensed chromosomes, fragment, and acentric ring. However, the modified C-band method used in this study makes it easier to identify the centromere on such chromosomes than with the use of Giemsa staining alone. Thus, the modified C-band method may give more information about the location of the centromere. Therefore, this method may be available and more useful for biological dose estimation due to the analysis of the dicentric chromosome in human lymphocytes exposed to the radiation. Furthermore, this method is simpler and faster than the original C-band protocol and fluorescence in situ hybridization (FISH) method with the centromeric DNA probe.  相似文献   

18.
彭应全  张福甲  台夕市  何锡源  张旭 《中国物理》2002,11(10):1076-1081
The mechanism of carrier transport in organic light-emitting devices is numerically studied,on the basis of trappedcharge-limited conduction with an exponential trap distribution.The spatial distributions of the electrical potential,field and carrier density in the organic layer are calculated and analysed.Most carriers are distributed near the two electrodes,only a few of them are distributed over the remaining part of the orgaic layer,The carriers are accumulated near the electrodes,and the remaining region is almost exhausted of carriers.When the characteristic energy of trap distribution is greater than 0.3eV.it leads to a reduction of current density.In order to improve the device efficiency,organic materials with minor traps and low characteristic energy should be chosen.The diffusion current is the dominant component near the injection electrode.whereas the drift current dominates the remaining region of the organic layer.  相似文献   

19.
Spin-flip (paramagnetic) scattering and neutron depolarization studies were performed on Ce2Fe17 in its paramagnetic phase on the Dhruva neutron polarization analysis spectrometer. The absence of normalQ dependence of the scattered spin flip intensity shows that Ce2Fe17 is not a normal paramagnetic and there exist superparamagnetic clusters of sufficiently large dimensions (~100Å). The observed neutron depolarization gives an indication of the dynamics of these Ce2Fe17 superparamagnetic clusters.  相似文献   

20.
In this paper we have used the Wavelet Transform (WT) and the Detrended Fluctuation Analysis (DFA) methods to analyze hand tremor movements in essential tremor (ET), in two different recording conditions (before and after the addition of wrist-cuff load). We have analyzed the time series comprised of peak-to-peak (PtP) intervals, extracted from regions around the first three main frequency components of the power spectra (PwS) of the recorded tremors, in order to substantiate results related to the effects of load on ET, to distinguish between multiple sources of ET, and to separate the influence of peripheral factors on ET.Our results show that, in ET, the dynamical characteristics, that is, values of respective scaling exponents, of the main frequency component of recorded tremors change after the addition of load. Our results also show that in all the observed cases the scaling behavior of the calculated functions changes as well—the calculated WT scalegrams and DFA functions display a shift in the position of the crossover when the load is added. We conclude that the difference in behavior of the WT and DFA functions between different conditions in ET could be associated with the expected pathology in ET, or with some additional mechanism that controls movements in ET patients, and causes the observed changes in scaling behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号