首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.  相似文献   

2.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), micro X-ray fluorescence spectroscopy (μXRF), and laser induced breakdown spectroscopy (LIBS) are compared in terms of discrimination power for a glass sample set consisting of 41 fragments. Excellent discrimination results (> 99% discrimination) were obtained for each of the methods. In addition, all three analytical methods produced very similar discrimination results in terms of the number of pairs found to be indistinguishable. The small number of indistinguishable pairs that were identified all originated from the same vehicle. The results also show a strong correlation between the data generated from the use of µXRF and LA-ICP-MS, when comparing µXRF strontium intensities to LA-ICP-MS strontium concentrations. A 266 nm laser was utilized for all LIBS analyses, which provided excellent precision (< 10% RSD for all elements and < 10% RSD for all ratios, N = 5). The paper also presents a thorough data analysis review for forensic glass examinations by LIBS and suggests several element ratios that provide accurate discrimination results related to the LIBS system used for this study. Different combinations of 10 ratios were used for discrimination, all of which assisted with eliminating Type I errors (false exclusions) and reducing Type II errors (false inclusions). The results demonstrate that the LIBS experimental setup described, when combined with a comprehensive data analysis protocol, provides comparable discrimination when compared to LA-ICP-MS and μXRF for the application of forensic glass examinations. Given the many advantages that LIBS offers, most notably reduced complexity and reduced cost of the instrumentation, LIBS is a viable alternative to LA-ICP-MS and μXRF for use in the forensic laboratory.  相似文献   

3.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

4.
Current methods used in document examinations are not suitable to associate or discriminate between sources of paper and gel inks with a high degree of certainty. Nearly non-destructive, laser-based methods using laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to improve the forensic comparisons of gel inks, ballpoint inks and document papers based on similarities in elemental composition. Some of the advantages of these laser-based methods include minimum sample consumption/destruction, high sensitivity, high selectivity and excellent discrimination between samples from different origins. Figures of merit are reported including limits of detection, precision, homogeneity at a micro-scale and linear dynamic range. The variation of the elemental composition in paper was studied within a single sheet, between pages from the same ream, between papers produced by the same plant at different time intervals and between seventeen paper sources produced by ten different plants. The results show that elemental analysis of paper by LIBS and LA-ICP-MS provides excellent discrimination (> 98%) between different sources. Batches manufactured at weekly and monthly intervals in the same mill were also differentiated. The ink of more than 200 black pens was analyzed to determine the variation of the chemical composition of the ink within a single pen, between pens from the same package and between brands of gel inks and ballpoint inks. Homogeneity studies show smaller variation of elemental compositions within a single source than between different sources (i.e. brands and types). It was possible to discriminate between pen markings from different brands and between pen markings from the same brand but different model. Discrimination of ~ 96–99% was achieved for sets that otherwise would remain inseparable by conventional methods. The results show that elemental analysis, using either LA-ICP-MS or LIBS, provides an effective, practical and robust technique for the discrimination of document paper and gel inks with minimum mass removal (9–15 μg) and minimum damage to the document's substrate.  相似文献   

5.
This paper describes the use of double-pulse laser ablation to improve ICP-MS internal (temporal relative standard deviation, %TRSD) and external (%RSD) precision. The first laser pulse is used to ablate a large quantity of mass from the sample surface. The second pulse is applied with a variable time delay after the first pulse to break the ablated mass into a finer aerosol, which is more readily transported to and digested in the ICP-MS. A factor of two improvement in %TRSD and factor of five in %RSD are demonstrated.  相似文献   

6.
Detection efficiencies of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), defined as the ratio of ions reaching the detector and atoms released by LA were measured. For this purpose, LA of silicate glasses, zircon, and pure silicon was performed using nanosecond (ns) as well as femtosecond (fs) LA. For instance, ns-LA of silicate glass using helium as in-cell carrier gas resulted in detection efficiencies between approximately 1E-7 for low and 3E-5 for high mass range elements which were, in addition, almost independent on the laser wavelength and pulse duration chosen. In contrast, the application of argon as carrier gas was found to suppress the detection efficiencies systematically by a factor of up to 5 mainly due to a less efficient aerosol-to-ion conversion and ion transmission inside the ICP-MS.  相似文献   

7.
Hui-Fang Hsieh 《Talanta》2009,79(2):183-240
This work describes a simple procedure for blood lead level determination. The proposed method requires little sample pretreatment and subsequent direct analysis of a dried blood spot on a filter membrane using laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS). In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards for calibration purposes. Here we describe aqueous standard calibration and matrix-matched calibration methods. This method was validated by analysis of the reference materials. With the matrix-matched calibration method, the recovery ranged from 97.8% to 112.8%, while the aqueous standard calibration method ranged 90.4% to 122.4%. The lower detection limit was estimated as 0.1 ng mL−1. The determination precision, expressed as the relative standard deviation (RSD), was not worse than 10% for all results. A sample throughput of approximately 5 min per sample made it possible to rapidly screen a large number of samples.  相似文献   

8.
The major challenge to the use of laser ablation sample introduction, combined with inductively coupled plasma mass spectrometry, is the problem of calibration. In the geological analysis of minerals, calibration is complicated by the extraordinarily wide variety of sample matrices which may be encountered. While there is a lack of mineral standards with well characterized concentrations near 1 g/g, the NIST glass reference materials (SRM 610–617) have been demonstrated to be very useful for the analysis of a wide variety of lithophile elements in silicate samples. An internal reference element, for which the concentration is known in the sample, has been widely used to make corrections for the multiplicative effects of volume (or weight) of the sample ablated, instrument drift, and matrix effects. This procedure works extremely well where elements being determined and the internal reference element being used share similar ablation behaviours; i.e., they do not fractionate progressively during the ablation and transport process. In this study, it is demonstrated that, in terms of ablation behaviour, elements fall into several distinct clusters and that the elements within these clusters correlate well with each other during a period of ablation. Thus, elements within a cluster can be determined using an internal reference element from within the same cluster. While a combination of periodic varying properties typifies the clusters, the geochemical classification of elements into lithophile (silicate loving), and chalcophile (sulphide loving) appears to offer the best characterization of the major groups.  相似文献   

9.
The dependence of analyte sensitivity and vaporization efficiency on the operating parameters of an inductively coupled plasma mass spectrometer (ICPMS) was investigated for a wide range of elements in aerosols, produced by laser ablation of silicate glass. The ion signals were recorded for different carrier gas flow rates at different plasma power for two different laser ablation systems and carrier gases. Differences in atomization efficiency and analyte sensitivity are significant for the two gases and the particle size distribution of the aerosol. Vaporization of the aerosol is enhanced when helium is used, which is attributed to a better energy-transfer from the plasma to the central channel of the ICP and a higher diffusion rate of the vaporized material. This minimizes elemental fractionation caused by sequential evaporation and reduces diffusion losses in the ICP. The sensitivity change with carrier gas flow variation is dependent on m/z of the analyte ion and the chemical properties of the element. Elements with high vaporization temperatures reach a maximum at lower gas flow rates than easily vaporized elements. The sensitivity change is furthermore dependent on m/z of the analyte ion, due to the mass dependence of the ion kinetic energies. The mass response curve of the ICPMS is thus not only a result of space charge effects in the ion optics but is also affected by radial diffusion of analyte ions and the mismatch between their kinetic energy after expansion in the vacuum interface and the ion optic settings.  相似文献   

10.
The major challenge to the use of laser ablation sample introduction, combined with inductively coupled plasma mass spectrometry, is the problem of calibration. In the geological analysis of minerals, calibration is complicated by the extraordinarily wide variety of sample matrices which may be encountered. While there is a lack of mineral standards with well characterized concentrations near 1 microg/g, the NIST glass reference materials (SRM 610-617) have been demonstrated to be very useful for the analysis of a wide variety of lithophile elements in silicate samples. An internal reference element, for which the concentration is known in the sample, has been widely used to make corrections for the multiplicative effects of volume (or weight) of the sample ablated, instrument drift, and matrix effects. This procedure works extremely well where elements being determined and the internal reference element being used share similar ablation behaviours; i.e., they do not fractionate progressively during the ablation and transport process. In this study, it is demonstrated that, in terms of ablation behaviour, elements fall into several distinct clusters and that the elements within these clusters correlate well with each other during a period of ablation. Thus, elements within a cluster can be determined using an internal reference element from within the same cluster. While a combination of periodic varying properties typifies the clusters, the geochemical classification of elements into lithophile (silicate loving), and chalcophile (sulphide loving) appears to offer the best characterization of the major groups.  相似文献   

11.
This paper is a summary of the current knowledge of laser-generated aerosols under atmospheric conditions. It is restricted to typical laser sampling conditions as they are used in LA-ICP spectrometry. Published experimental evidence and proposed models are reviewed and critical summarized. The collected works show that a certain agreement exists that independently of the sample two size fractions with different chemical composition are found. The mechanism generating the different particle fractions are currently not clear. Possible sources of particle generation are described and critically reviewed. Fundamentally three distinguishable modes (gas, liquid, solid) can be described that can appear: gas-to-particle conversion, hydrodynamic sputtering, mechanical spallation/exfoliation. More recently explosive boiling as a mechanism of liquid expulsion has been discussed as a further possible source under certain conditions. Particle conditioning during transport is discussed as a source for agglomeration. The correlation between size distribution and laser parameters is discussed.  相似文献   

12.
The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation.Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls.Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of ejected spherical particles. The expansion of the laser aerosol was also investigated using polished brass substrates in the expansion path-way for particle collection.  相似文献   

13.
Laser induced breakdown spectroscopy is combined with a spark discharge to operate in a laser triggered spark discharge mode. This spark discharge laser induced breakdown spectroscopy (SD-LIBS) is evaluated for Al and Cu targets in air under atmospheric pressure. Significant enhancement in the measured line intensities and the signal-to-background ratios, which depend on the spark discharge voltage and the laser fluence, is observed in spark discharge laser induced breakdown spectroscopy when compared to laser induced breakdown spectroscopy alone for similar laser conditions. The measured line intensities increase with the applied voltage for both targets, and the ratio of the measured line intensity using spark discharge laser induced breakdown spectroscopy to that using laser induced breakdown spectroscopy is found to increase as the laser fluence is decreased. For Al II 358.56, such intensity enhancement ratio increases from 50 to 400 as the laser fluence is decreased from 48 to 4 J/cm2 at an applied voltage of 3.5 kV. Thus, spark discharge laser induced breakdown spectroscopy allows for using laser pulses with relatively low energy to ablate the studied material, causing less ablation, and hence less damage to its surface. Moreover, applying spark discharge laser induced breakdown spectroscopy gives up to 6-fold enhancement in the S / B ratio, compared to those obtained with laser induced breakdown spectroscopy for the investigated spectral emission lines.  相似文献   

14.
Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm− 2. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg− 1 B, 3.0 mg kg− 1 Cu, 3.6 mg kg− 1 Fe, 1.8 mg kg− 1 Mn and 1.2 mg kg− 1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.  相似文献   

15.
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.  相似文献   

16.
The feasibility of depth profiling was studied by using a 193-nm ArF* excimer laser ablation system (GeoLas, MicroLas, Goettingen, Germany) with a lens array-based beam homogenizer in combination with an ICP-QMS Agilent 7500. Two ablation cells (20 and 1.5 cm3) were compared at the laser repetition rate of 1 Hz, laser beam energy of 135 mJ and the carrier gas flow rate 1.5 L min–1 He + 0.78 L min–1 Ar. The ablation cell dimensions are important parameters for signal tailing; however, very small cell volumes (e.g. 1.5 cm3) may cause memory effects, which can be probably explained by dominant inertial losses of aerosol on cell walls with its delayed mobilization. The 20-cm3 ablation cell seems to be appropriate for depth profiling by continuous single-hole drilling. The study of the influence of the pit diameter magnitude on the waning and emerging signals under small crater depth/diameter aspect ratios, which range between 0.75 and 0.0375 for the 3-m-thick coatings and pit diameters 4–80 m, revealed that the steady-state signals of pure coating and pure substrate (out of interface) were obtained at crater diameters between 20 and 40 m. Depth resolution defined by means of slopes of tangents in the layer interface region depend on the pit diameter and has an optimum value between 20 and 40 m and gives 0.6 m for the 20-m pit. In-depth variation of concentration of coating constituent (Ti) was proved to be almost identical with two different laser/ICP systems.Viktor Kanický performed this work while on leave at ETH Zurich  相似文献   

17.
Coedo AG  Padilla I  Dorado MT 《Talanta》2005,67(1):136-143
Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO + Fe2O3 synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.  相似文献   

18.
The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition.  相似文献   

19.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C+, 33S+ and 34S+ within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C+ as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.  相似文献   

20.
A laser ablation setup including outer chamber, sample tube, sample holder and transport tubing was modelled and optimized using advanced computational fluid dynamics techniques. The different components of the setup were coupled and the whole device was modelled at once. The mass transport efficiency and transit times of near infrared femtosecond (fs) laser generated brass aerosols in pure argon and helium–argon mixtures were calculated at experimentally optimized conditions and a transient signal was constructed. The use of helium or argon did not influence the mass transport efficiency, but the signal structure changed. The signal fine structure was retrieved and experimentally validated. Bimodal peak structures were observed that seemed to originate from turbulent effects in the tubing connecting a Y-connector and the injector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号