首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用密度泛函B3P86方法,分别选用STO-3G,D95**,6-311G,6-311++G,6-311++G**,cc-PVTZ基组对SiO分子基态(X1Σ+)进行结构优化计算.通过比较得出,cc-PVTZ基组为对SiO分子基态(X1Σ+)进行结构优化最优基组的结论.使用密度泛函B3P86方法,选用cc-PVTZ基组进 关键词: B3P86 SiO 势能函数 光谱常数  相似文献   

2.
根据群论及原子分子反应静力学的有关原理,推导了PS基态分子电子态及其合理的离解极限.采用Gaussian 03软件中的密度泛函理论B3LYP和B3P86结合6-311++G(3df,3pd)、6-311++G、6-311G(3df,3pd)、cc-p VTZ和D95基组,对PS分子基态平衡结构和谐振频率进行了计算.通过比较计算结果,发现B3P86方法结合cc-p VTZ基组计算所得结果与实验值最接近.在该水平下对PS分子的基态进行了单点势能扫描计算,利用正规方程组拟合三参数的Murrell-Sorbie函数和修正的Murrell-Sorbie+C6函数,得到了基态PS分子完整的势能函数与相应的光谱常数ωe、ωexe、Be和αe的值.计算结果表明,利用三参数的Murrell-Sorbie函数计算所得的光谱常数与实验数据吻合得更好.  相似文献   

3.
AlC,SiC基态分子结构与分析势能函数的量子力学计算   总被引:1,自引:0,他引:1  
用密度泛函理论的B3LYP方法和二次组态相互作用(QCISD(T))方法,选择6-31G(d,p)、6-311 G(2df,2pd)、6-311 G(3df,3pd)、cc-PVTZ、AUG-cc-PVTZ基组,优化计算了AlC和SiC分子基态的能量,平衡结构,谐振频率.根据原子分子反应静力学原理,导出了AlC和SiC分子基态的合理离解极限和离解能.通过优化计算结果和实验数据的对比,选择QCISD(T)/6-311 G(3df,3pd)方法对AlC和SiC分子基态的势能面进行了单点能扫描.采用最小二乘法拟合得到了AlC和SiC分子基态的Murell-Sor-bie势能函数.同时计算了光谱参数(Be,eα,ωe,ωeχe)和力常数(f2,f3,f4),并与实验结果进行比较.结果表明,计算结果与实验数据吻合的较好.  相似文献   

4.
根据群论及原子分子反应静力学的有关原理,推导出SiO,SiS分子基态(X1Σ+)的合理离解极限.使用密度泛函方法中的B3P LY和B3P86方法,在6-311++G(3df,2pd)和D95(3df,2pd)基组下对SiO,SiS分子的基态进行结构优化计算,使用优选的B3P86/D95(3df,2pd)对基态单点能扫描计算.然后用最小二乘法拟合Murrell-Sorbie函数,得到对应的势能函数参数及光谱常数.结果表明,采用Murrell-Sorbie函数计算所得的光谱常数与实验结果符合的很好,能精确地描述SiO,SiS分子基态的势能函数.  相似文献   

5.
使用SAC/SAC-CI方法,利用6-311 g,6-311g**及cc-PVTZ等基组,对Na2分子的基态(X1Σg )、第一激发态(A1Σu )和第二激发态(B1Πu)的平衡结构和谐振频率进行计算.通过对3个基组的计算结果的比较,得出6-311g**基组为3个基组中最优基组的结论;使用6-311g**基组,分别利用SAC的GSUM(Group Sum of Operators)方法对基态(X1Σg ),SAC-CI的GSUM方法对激发态(A1Σu )和(B1Πu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的完整势能函数.用得到的势能函数计算与基态(X1Σg ),第一激发态(A1Σu )和第二激发态(B1Πu)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本吻合.  相似文献   

6.
MgH分子X2Σ+,A2Π和B2Σ+电子态的势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
利用QCISD(T),SAC-CI方法和cc-pVQZ,aug-cc-pVTZ,6-311 G及6-311 G(3df,2pd)基组,对MgH分子的基态X2Σ ,第一简并激发态A2Π和第二激发态B2Σ 的结构进行优化计算.通过对4个基组计算结果进行比较,得出6-311 G(3df,2pd)基组为最优基组.使用6-311 G(3df,2pd)基组和QCISD(T)方法对基态X2Σ ,SAC-CI方法对激发态A2Π和B2Σ 进行单点能扫描计算,然后采用Murrell-Sorbie函数及修正的Murrell-Sorbie C6函数进行拟合,得到了相应电子态的势能函数参数和对应的光谱常数.计算结果表明,用修正的Murrell-Sorbie C6函数计算得到的MgH分子基态和第一简并激发态的光谱常数ωe,ωexe,Be,αe与实验数据吻合很好.表明修正后的Murrell-Sorbie C6函数能更为准确地描述MgH分子的基态和第一激发态的势能函数.  相似文献   

7.
LiH分子X 1Σ+、 A 1Σ+和B 1Π态的势能函数   总被引:1,自引:0,他引:1  
利用SAC/SAC-CI方法,使用D95(d)、6-311G**及cc-PVTZ等基组,对LiH分子的基态(X1Σ+)、第一激发态(A1Σ+)及第二简并激发态(B1Π)的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了D95(d)基组为三个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(GroupSumofOperators)方法对基态(X1Σ+)、SAC-CI的GSUM方法对激发态(A1Σ+和B1Π)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1Σ+)相对应的光谱常数,结果与实验数据较为一致.  相似文献   

8.
根据群论及原子分子反应静力学的有关原理,推导出SiO,SiS分子基态(X1∑+)的合理离解极限.使用密度泛函方法中的B3P LY和B3P86方法,在6-311++G(3df,2pd)和D95(3df,2pd)基组下对SiO,SiS分子的基态进行结构优化计算,使用优选的B3P86/D95(3df,2pd)对基态单点能扫描计算.然后用最小二秉法拟合Murrell-Sorbie函数,得到对应的势能函数参数及光谱常数.结果表明,采用Murrell-Sorbie函数计算所得的光谱常教与实验结果符合的很好,能精确地描述SiO,SiS分子基态的势能函数.  相似文献   

9.
AlN,GaN和InN分子基态的结构和解析势能函数(英文)   总被引:1,自引:1,他引:0  
采用密度泛函理论的B3LYP/6-311+G(3df)方法优化计算了A1N,GaN和InN分子基态的平衡结构、振动频率和离解能.根据原子分子反应静力学原理,导出了A1N,GaN和InN分子的合理离解极限,利用Murrell-Sorbie势能函数和从头算结果得到基态相应的解析势能函数并由光谱数据和解析势能函数的关系计算了基态的光谱数据(α_e,B_e,ω_e和ω_ex_e),计算结果与实验数据符合得相当好.  相似文献   

10.
魏洪源  熊晓玲  刘国平  罗顺忠 《物理学报》2011,60(6):63401-063401
应用群论及原子分子反应静力学方法推导了TiO分子基态(X3Δr)的离解极限.采用不同的计算方法,包括密度泛函B3LYP,B3P86,BP86,B3PW91和MP2,MP4方法,结合不同基组计算了TiO分子基态的平衡核间距、能量和振动频率.研究表明,使用B3LYP方法,对O原子使用6-311+G基组,Ti原子使用6-311+ +G**基组时计算得到的平衡几何结构、分子离解能和谐振频率与实验值符合得最好.使用优选出的方法和基组对T 关键词: TiO 势能函数 光谱常数 密度泛函理论  相似文献   

11.
使用SAC/SAC-CI方法,利用D95(d),6-311g**以及cc-PVTZ等基组,对B2分子的基态(X3Σg-)和第一激发态(A3Σu-)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了D95(d)基组为3个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X3Σg-),SAC-CI的GSUM方法对激发态(A3Σu-)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X3Σg-)和第一激发态(A3Σu-)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据吻合.  相似文献   

12.
根据群论及原子分子反应静力学的有关原理,推导出NaH和AlH分子基态(X~1Σ~+)的合理离解极限.使用密度泛函方法中的B3LYP、B3PW91和MPW1PW91方法,在6-311++G,6-311++G(3df,3pd),cc-pVQZ和aug-cc-pVQZ基组下对NaH和AlH分子的基态进行结构优化计算,使用优选的B3PW91/6-311++G(3df,3pd)对基态单点能扫描计算,然后用最小二乘法拟合Murrell-Sorbie函数,得到对应的势能函数参数及光谱常数.结果表明,采用Murrell-Sorbie函数计算所得的光谱常数与实验结果符合的很好,能精确地描述NaH和AlH分子基态的势能函数.  相似文献   

13.
SiF2基态分子的结构与势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
运用Gaussian03软件包,采用密度泛函理论中的B3P86 方法,结合6-311++G**(3df,3pd)基组对基态SiF2分子的平衡电子结构和谐振频率进行了优化计算,得到了其稳定结构为C2v构型.SiF2基态电子态为X1A1,平衡核间距RSi-F=0.1061nm,键角αF-Si-F=100.6762°,离解能 De=13.8eV.应用多体项展式理论推导了基态SiF2分子的解析势能函数,其等值势能图准确地再现了SiF2分子的平衡构型特征和能量变化.  相似文献   

14.
根据群论及原子分子反应静力学的有关原理,推导出NaH和AlH分子基态(X^1Σ^+)的合理离解极限.使用密度泛函方法中的B3LYP、B3PW91和MPW1PW91方法,在6-311++G,6-311++G(3df,3pd),cc-pVQZ和aug-cc-pVQZ基组下对NaH和AlH分子的基态进行结构优化计算,使用优选的B3PW91/6-311++G(3df,3pd)对基态单点能扫描计算,然后用最小二乘法拟合Murrell-Sorbie函数,得到对应的势能函数参数及光谱常数.结果表明,采用Murrell-Sorbie函数计算所得的光谱常数与实验结果符合的很好,能精确地描述NaH和AlH分子基态的势能函数.  相似文献   

15.
AlH分子结构与分析势能函数   总被引:1,自引:4,他引:1  
本文运用群论及原子分子反应静力学方法,推导了 AlH分子的基态(X1Σ+)、第一激发态(A1Π)及第三激发态(C1S+)的电子态及相应的离解极限.并使用SAC/SAC-CI方法,采用D95 (d)、6-311g(d)和cc-PVTZ等基组对AlH分子的基态(X1Σ+)、第一激发态(A1Π)和第三激发态(C1S+)的平衡结构和谐振频率进行了几何优化计算.通过对三个基组的计算结果与实验结果的比较,得到cc-PVTZ基组是三个基组中最优基组的结论.使用cc-PVTZ基组,对AlH 分子的基态(X1Σ+)、第一激发态(A1Π)和第三激发态(C1S+)进行了单点能扫描计算,并给出了AlH的基态(X1Σ+)、第一激发态(A1Π) 和第三激发态(C1S+)的Murrell-Sorbie函数形式的电子态的完整势能函数,进而得到了AlH分子第一激发态(A1Π)的激发能较小的结论.  相似文献   

16.
运用原子分子群表示方法,首先确定NaLi分子的电子基态(X1∑ ).然后选用6-311 G(3df,2pd)基组优化计算得到NaLi分子基态(X1∑ )的平衡结构和离解能,采用电子相关QCISD(T)方法结合6-311 G(3df,2pd)基组对NaLi分子基态进行单点能扫描计算.最后用单点扫描计算值结合优化计算所得参数去拟合Murrell-Sorbie函数,得到了NaLi分子基态的势能函数.用该势能函数计算的光谱常数与实验结果符合得很好,表明拟合确定的势能函数能精确地描述基态NaLi分子的结构和性质.  相似文献   

17.
采用量子力学从头算方法,运用二次组态相互作用方法QCISD(T)结合6-311++G(3df,2pd)基组对CaH,CaD分子基态进行了几何结构优化、计算出了它们的光谱数据(ωe、ωeχe、Be、αe、De),结果与实验光谱数据吻合较好,表明上述分子基态的势能函数可用Murrell-Sorbie函数来表示.  相似文献   

18.
采用量子力学从头算方法,运用二次组态相互作用方法QCISD(T)结合6-311 G(3df,2pd)基组对CaH,CaD分子基态进行了几何结构优化、计算出了它们的光谱数据(ωe、ωeχe、Be、αe、De),结果与实验光谱数据吻合较好,表明上述分子基态的势能函数可用Murrell-Sorbie函数来表示.  相似文献   

19.
本文采用量子力学从头算方法,运用电相关单双耦合CCSD(T)/6-311 G(3df,2pd)和QCISD(T)/6-311 G(3df,2pd)研究了PH、PD分子基态的结构与势能函数,计算出了这些分子的光谱数据(ωe、ωeχe、Be、αe、De),结果与实验光谱数据吻合较好.这表明上述分子基态的势能函数可用经修正的Murrell-Sorbie c6函数来表示.  相似文献   

20.
使用SAC/SAC-CI方法,利用6-311 g,6-311g**及cc-PVTZ等基组,对Na2分子的基态(X1∑ g)、第一激发态(A1∑ g)和第二激发态(B1Ⅱu)的平衡结构和谐振频率进行计算.通过对3个基组的计算结果的比较,得出6-311g**基组为3个基组中最优基组的结论;使用6-311g**基组,分别利用SAC的GSUM(Group Sum of Operators)方法对基态(X1∑ g),SAC-CI的GSUM方法对激发态(A1∑ u)和(B1Ⅱu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的完整势能函数.用得到的势能函数计算与基态(X1∑ g),第一激发态(A1∑ u)和第二激发态(B1Ⅱu)相对应的光谱常数(Be,αe,we和weXe),结果与实验数据基本吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号