首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为使战斗部具有多种定向毁伤模式并实现一定程度上的可控毁伤,提出了一种扇形装药的可变形定向破片战斗部,该战斗部可实现轴向展开和侧向展开2种模式。采用AUTODYN软件进行破片场的数值模拟。首先,基于战斗部单元体分析获得了距离轴心25 mm处的最佳起爆点位置;其次,对整个战斗部进行分析,在轴向展开模式下分析了轴向展开角度对破片飞散速度、破片数目和破片空间分布的影响,发现轴向展开角在60°~75°范围内毁伤效果较佳;最后,在侧向展开模式下分析了整个战斗部的破片速度和破片空间分布情况,结果表明破片具有明显的定向飞散特性。  相似文献   

2.
为提高定向战斗部的毁伤效能,明确序贯起爆参数对定向战斗部毁伤效能的影响,运用LS-DYNA有限元程序,采用破片速度差累加和飞散角累加的方法,研究了不同序贯起爆参数下破片初始威力参数,利用毁伤概率法,计算了不同序贯起爆参数下战斗部对地面军用车辆的毁伤效能。结果表明:起爆线个数和起爆线夹角主要影响破片速度大小,起爆延时时间主要影响破片速度大小和飞散角正负占比。相对于偏心一线和三线序贯起爆,偏心两线序贯起爆在落高为7~9 m时有7.5~25.0 m2的毁伤面积。当起爆线夹角由30°增大到120°,落高为4~8 m时,战斗部对地面军用车辆的毁伤面积降低3.9%~60.3%。序贯起爆的延时时间由零增加到0.75倍的相邻起爆点间爆轰波传播时间,落高为4~8 m时,战斗部的毁伤面积增加8.4%~87.2%。当起爆方式采用偏心两线序贯起爆,起爆线夹角取30°~60°,延时时间取0.50~0.75倍的相邻起爆点间爆轰波传播时间时,破片战斗部对地面军用车辆目标具有较好的毁伤效能。  相似文献   

3.
超高速撞击过程伴随着复杂的物理过程。为分析杆式圆柱形钨合金弹超高速撞击薄钢靶时的物理过程,采用AUTODYN/SPH数值仿真计算方法获得了撞击过程模型及每个光滑粒子流体动力学信息,并通过广度搜索破片识别程序识别每个破片所含粒子,利用MATLAB编程对破片粒子数据信息进行统计分析,获得弹靶撞击过程的变化特性、弹靶破片数量、相关能量随撞击时间的变化规律。通过分析发现:随着弹体撞击速度的增加,剩余弹体被严重侵蚀,且弹体能量损耗增加,弹体损失的能量主要转变为弹靶破片动能;计算得到了撞击20μs时的能量损耗直方图,同时分析了发生撞击时靶板的能量变化过程,并简要描述了该过程。  相似文献   

4.
为研究破片模拟弹侵彻钢板的过程,将模拟弹冲击钢装甲的侵彻过程分为初始接触、弹体侵入、剪切冲塞和穿甲破坏4个阶段进行理论分析。当靶板剩余厚度的剪切冲塞抗力小于延性扩孔抗力时,靶板的破坏模式完全转变为剪切冲塞;剪切塞块速度与剩余弹体速度相同时,推导出破片模拟弹侵彻钢靶板的能量转化及剩余速度公式,与实验及有限元分析结果吻合较好。研究结果对于破片侵彻钢靶板威力设计具有一定实用价值。  相似文献   

5.
为了研究低附带战斗部的非金属破片飞散特性,结合某低附带杀伤战斗部静爆威力实验,对战斗部爆炸产生的非金属破片初速以及速度衰减情况进行了分析。基于能量守恒得到了包含壳体结构和材料强度因素的破片初速公式;基于破片在空气中飞行运动情况的分析,通过对球形破片阻力公式和等效面积进行修正,得到了非金属自然破片的速度衰减规律。所得结果较好地解释了战斗部静爆实验中的破片终点效应情况,亦可为该类战斗部破片毁伤效应评估提供一种分析方法。  相似文献   

6.
为了进一步提高复合战斗部的毁伤输出效率,基于一种可形成聚能侵彻体、预制破片和自然破片3种毁伤元的破甲杀伤复合战斗部结构,应用LS-DYNA数值仿真软件,研究了起爆点位置、起爆直径和起爆点数量对复合战斗部各毁伤元成型和能量输出的影响,讨论了实现战斗部毁伤威力可调的技术路径。结果表明:起爆点距药型罩越远、数量越多、起爆直径越大,由药型罩形成的聚能侵彻体的头部速度越高,头尾速度差和长径比越大,速度增益最高可达50%,可以实现爆炸成型弹丸(EFP)到聚能杆式侵彻体(JPC)转换;在装药内部轴线阵列多点起爆时,聚能侵彻体的成型基本仅与离药型罩最近的起爆点有关。对于预制破片,装药高度60 mm(P2)处起爆速度最快,增加起爆点数量和增大起爆直径可以有效提高预制破片的最高速度,但整体上最低速度仍在600 m/s上下波动,变化并不显著。对于壳体形成的自然破片,以平均速度来表征时,整体变化并不明显,速度增益不足10%,但合理的起爆方式可使壳体断裂形成的自然破片更均匀,有利于调整破片质量分布。通过控制起爆方式可在一定程度上实现复合战斗部毁伤威力可调,但对于破片速度的调控仍需进一步研究。  相似文献   

7.
动能杆反导战斗部作为新型的反导战斗部,在国外得到了广泛关注,动能杆战斗部的反导威力评估研究中,大长径比杆条杀伤元素的终点毁伤能力分析是关键内容之一。相对于传统破片及长杆穿甲弹的穿甲过程,动能杆反导的终点毁伤杀伤元素质量大(一般为几十至几百克)、长径比大(高达10以上)、散布密度高(每平方米可高达几十枚杀伤元素)、着靶速度高(弹目相对速度高达3-4km/s)、着靶姿态复杂(存在较大的着角及攻角)及存在多层靶毁伤等特点,建立准确的动能杆类杀伤元素的终点毁伤威力评估模型,对于实现战斗部反导威力的高精度评估有着重要的意义。  相似文献   

8.
倪晋平  田会  杨雷 《光学技术》2008,34(1):152-155
针对战斗部常规生产检验,提出了采用多个光幕靶、数据采集仪和位置标识器进行测速的方法。光幕靶探测破片穿过的时刻,数据采集仪记录波形并提取破片穿过光幕靶的时间,位置标识器可以识别破片飞行的方向角度,从而计算破片实际飞行的靶距。介绍了测速系统的组成,光幕靶设计以及测速系统的冲击与破片杀伤防护措施。采用战斗部静爆试验验证了所提方法,结果表明所提方法准确有效。给出了破片穿过光幕的瞬态波形。  相似文献   

9.
随着计算机技术的发展及军事需求的增长,目标易损性/战斗部实战威力(V/L)的仿真评估方法研究,已经从简单的战斗部威力参数评估发展到实战毁伤威力的仿真模拟,评估目标也从简单的简化目标发展到复杂的三维目标。但是,采用目前的传统评估技术和方法仍难以实现目标三维模型的描述,以及弹目交会作用结果的精确分析。因此,有必要结合计算机仿真技术及高精度目标毁伤评估技术,研究新的目标毁伤评估方法,为目标毁伤/战斗部威力的高精度评估奠定基础。  相似文献   

10.
为了获得弹体材料性能对破片形成的影响规律,应用破片战斗部设计软件,数值计算了82钢、50SiMnVB钢、40CrMnSiB钢及30CrMnSiNi2A钢等4种材料形成破片的情况,得到了4种材料形成的破片的飞散角、初速及质量分布的变化规律,并进行了破片质量分布的实验研究。结果表明,不同合金钢材料对形成的破片飞散角与初速的影响不大,且沿弹体轴向方向的变化规律相同,其中破片飞散角沿弹轴方向先减小后增大,破片的最大初速出现在距起爆点约72.5%圆筒长度处;但是对破片质量分布情况的影响较大,随着材料极限抗拉强度的增加和断裂韧性的降低,弹体破碎程度升高,总破片数增加了39.3%。  相似文献   

11.
针对柱状装药的周向预制破片战斗部,结合无量纲分析方法和爆炸驱动理论,确定了影响破片和冲击波相遇位置的关键参数,给出了由缩比战斗部推广预测原型战斗部爆炸产生的破片冲击波作用时序的方法。采用ANSYS/LS-DYNA有限元软件进行数值模拟,对比验证了理论分析和数值试验结果,分析了战斗部缩比比例对冲击波和破片作用时序的影响。结果表明:缩比模型与原型战斗部爆炸产生的破片和冲击波的相遇位置之比和相遇时间之比主要取决于两模型的质量比,在不考虑破片速度衰减时,两模型中载荷相遇位置之比和相遇时间之比等于其质量比的0.33次方。受破片速度衰减影响,该方法仅适用于质量缩比不小于0.2的模型。  相似文献   

12.
利用非线性动力学软件AUTODYN,对爆炸冲击波作用下无孔及预制孔靶板的塑性变形进行了数值模拟,获得了不同孔数、孔径情况下靶板中心点挠度的变化规律;设计了模型实验,其结果与数值结果符合较好;并以爆炸冲击波作用下无孔靶板中心点挠度计算公式和数值计算结果为基础,通过拟合给出了预制孔靶板中心点挠度与孔密度、孔径之间的函数关系,该关系可为有孔平板目标的毁伤评估及破片、冲击波对平板目标联合毁伤研究提供参考。  相似文献   

13.
弹靶侵彻仿真中材料参数对计算结果有着至关重要的影响。为寻求一套适用于弹靶侵彻仿真计算的材料参数拟合方法,借助前期开展的靶板材料动态力学性能试验、靶板材料断裂试验,通过不同拟合方法依次得到不同的JC本构模型及失效模型参数,依据试验建立有限元计算模型,将数值计算结果与试验结果进行对比。结果表明:(1)对于同一材料的力学性能试验,采用不同的拟合方法可得到不同的JC本构、JC失效参数,二者会对弹靶仿真结果造成一定影响;(2)在不考虑温度软化项的前提下,采用高应变率作为参考应变率进行拟合能更加准确地表征材料在高应变率下的应力-应变关系,更加适用于弹靶侵彻强瞬态、高应变率作用过程仿真;(3)对于同一JC本构模型,采用平均应力三轴度拟合的JC失效模型较采用初始应力三轴度拟合的JC失效模型所得战斗部剩余速度计算结果偏小,仅采用拉伸试件结果拟合的JC失效模型较采用扭转、拉伸试件结果拟合的JC失效模型所得战斗部剩余速度计算结果偏小。  相似文献   

14.
为了提高一体式多爆炸成型弹丸(MEFP)的成型效果及侵彻能力,通过数值模拟分析了药型罩形状及壁厚、壳体厚度、起爆方式、破片支架对其成型及速度的影响,在此基础上给出了一种一体式MEFP战斗部,通过实验验证了该一体式MEFP战斗部结构的成型、散布特征及侵彻性能。结果表明:该战斗部可形成17枚聚能杆式弹丸(JPC),且单个JPC形状、飞行方向稳定,飞散角为14.5°,与实验结果14.8°吻合良好;该MEFP战斗部可对12mm厚的603装甲钢靶板造成有效毁伤。  相似文献   

15.
为了研究Q235钢多层板的抗侵彻性能,进行了直径为9.45 mm的钨合金球形破片侵彻7.2 mm和(3.6+3.6)mm厚Q235钢双层板试验,获得了相应的弹道极限。在此基础上,建立数值仿真模型,研究了钨合金球侵彻接触式等厚3层、4层、5层、6层板的弹道极限。通过量纲分析方法,分析了分层数对靶板弹道极限的影响。结果表明:对于球形破片,总厚度为7.2 mm的等厚双层板的抗侵彻性能高于单层板;当分层数大于2时,接触式多层等厚靶板的弹道极限随着层数的增加而减小,即分层数越多,靶板的抗侵彻性能越低,通过量纲分析方法得到了靶板分层数与破片弹道极限的关系。研究结果可为未来装甲防护设计提供一定的参考。  相似文献   

16.
偏心起爆战斗部随机破片数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用AUTODYN-3D软件和基于Mott破片分布理论的Stochastic随机破碎模型,对破碎型偏心起爆战斗部的破片形成进行了三维数值模拟,对比分析了3种起爆方式下自然破片的飞散特性以及偏心起爆时不同起爆半径随机破片的飞散特性。结果表明:偏心单点和偏心多点起爆在目标区域产生的破片数比中心点起爆分别提高了37.12%和62.86%,且破片质量小,破片的利用率可以提高4.01%~6.08%;偏心单点和偏心多点起爆的平均速度增益为25.95%和28.37%;对于偏心起爆,随着起爆半径的减小,目标区域的随机破片数减小,轴向速度和径向速度也随之减小。  相似文献   

17.
为研究不同形状贫铀(Depleted Uranium,DU)合金破片的侵彻性能,首先进行了终点弹道实验,得到了圆柱形DU破片侵彻20 mm厚Q235B钢靶的终点弹道相关参数.然后通过AUTODYN软件进行了相应终点弹道仿真模拟,结果表明,仿真与实验结果基本一致,验证了仿真结果的正确性.随后又在原仿真的基础上增加了圆柱形、立方形和球形破片以不同着靶姿态侵彻靶板的数值仿真.结果表明,在相同质量和相同初速的条件下,棱角着靶姿态的立方体、楞线着靶姿态的立方体和球形破片的侵彻能力依次减弱,圆柱形和平行着靶姿态的立方形破片侵彻能力最差.若均以垂直姿态着靶,圆柱形破片侵彻能力要强于立方体,以棱角或楞线着靶姿态着靶的立方体具有更强的侵彻能力.  相似文献   

18.
为研究爆轰驱动下椭圆截面自然破片杀伤战斗部壳体的膨胀破裂过程以及壳体破片径向速度分布,建立了椭圆截面战斗部三维模型。通过AUTODYN-3D软件,采用Lagrange算法模拟爆轰驱动下椭圆截面自然破片战斗部壳体的膨胀断裂过程,研究了端面单点中心起爆方式下短长轴断裂时间差与短长轴比的关系,以及不同起爆点、不同短长轴比和不同装填比(即装药与壳体质量之比)对椭圆截面战斗部径向破片速度分布的影响。结果表明:与端面中心单点起爆、端面长轴双点偏心起爆和端面短长轴四点偏心起爆相比,端面短轴双点偏心起爆方式对椭圆截面战斗部壳体破片径向速度的增益效果最好。装填比一定时,短、长轴断裂时间以及短、长轴断裂时间差与短长轴比呈线性关系,战斗部壳体膨胀过程中截面形状的实时短长轴比与加载时间呈线性关系;随着短长轴比的增大,战斗部壳体破片径向速度增益逐渐减小。短长轴比一定,装填比小于1时,破片速度随方位角增大呈正弦趋势上升,且短、长轴方向破片速度差与装填比呈线性关系。  相似文献   

19.
破片对带铝壳炸药的冲击起爆数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 采用AUTODYN-2D数值模拟软件,应用冲击起爆Lee-Tarver模型,对钢破片撞击带铝壳Octol炸药的起爆问题进行了数值模拟,分析了冲击起爆机理及破片形状、着速、铝壳厚度等因素对炸药起爆特性的影响规律,利用“升-降”法得到了破片对Octol炸药的临界冲击起爆速度。研究结果对反导战斗部破片杀伤元素的设计具有指导意义。  相似文献   

20.
为研究破片式战斗部爆炸后破片和冲击波两种毁伤元的相遇位置,先通过ANSYS/LS-DYNA对破片式战斗部的爆炸过程进行数值计算,再通过试验的方法测量破片和冲击波相遇位置,验证了数值计算方法的合理性。在此基础上,分析了装填系数、破片质量、爆速和爆热对相遇位置的影响。结果表明:随着装填系数、破片质量、爆速和爆热的增加,相遇位置减小;装填系数增加31%,相遇位置距爆炸中心的距离减小11.5%;单枚破片质量增加1倍,相遇位置距爆炸中心的距离减小2.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号