首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the pursuit of making the nanoscale-research greener, the utilization of the reductive potency of a common byproduct of food processing industry i.e. orange peel is reported here to prepare biopolymer-templated "green" silver nanoparticles. Aqueous extract of orange peel at basic pH was exploited to prepare starch supported nanoparticles under ambient conditions. The compositional abundance of pectins, flavonoids, ascorbic acid, sugars, carotenoids and myriad other flavones may be envisaged for the effective reductive potential of orange peel to generate silver nanoparticles. The nanoparticles were distributed within a narrow size spectrum of (3-12 nm) with characteristic Bragg's reflection planes of fcc structure, and surface plasmon resonance peak at 404 nm. Anti-lipid peroxidation assay using goat liver homogenate and DPPH scavenging test established the anti-oxidant potency of the silver nanoparticles. Their synergy with rifampicin against Bacillus subtilis MTCC 736 and cytocompatibility with the human leukemic monocytic cell line, THP-1 were also investigated. Thus, the present work deals with the preparation of starch assisted anti-microbial, cytocompatible and free radical scavenging "green" silver nanoparticles.  相似文献   

2.
Silver–polypyrrole (PPy) core–shell nanoparticles have been fabricated by a facile one-step “green” synthesis using silver nitrate as an oxidant and soluble starch as an environmentally benign stabilizer and co-reducing agent. The morphology and optical properties of the particles were significantly affected by the reaction temperature, soluble starch concentration, and ratio of pyrrole monomer to AgNO3 oxidant. The core–shell nanoparticles exhibited outstanding dispersive properties in deionized water due to residual starch, as compared with PPy nanoparticles in which starch was absent. The mechanism of core–shell nanoparticle formation was elucidated through TEM imaging vs. reaction time. The colloidal and chemical stability of the nanoparticles was demonstrated in a variety of solvents, including acids, bases, and ionic and organic solvents, through monitoring the localized surface plasmon resonance of the nanoparticles. Furthermore, the catalytic properties of these silver–PPy core–shell nanoparticles were also demonstrated.
Figure
Schematic illustration of silver-PPy core-shell nanoparticle formation and methylene blue (MB) reduction using the core-shell nanoparticles as a catalyst.  相似文献   

3.
维生素E绿色还原法制备银纳米粒子的研究   总被引:1,自引:0,他引:1  
采用一种绿色还原法制备银纳米粒子,以维生素E为还原剂,淀粉为稳定剂,在液相中还原硫酸银,通过改变溶液的pH值和反应时间,得到不同粒径的黄色银纳米粒子,并分别采用透射电镜、红外光谱、紫外-可见吸收光谱、扫描电镜和电化学方法对银纳米粒子进行表征。结果表明:维生素E在溶液中被氧化生成苯醌,反应得到的银纳米粒子为球形,粒径为8~25 nm;在较强碱性条件下,得到的银纳米粒子尺寸较小,分布较均匀,其平均粒径约为10 nm;不同条件下生成的银溶胶分别在417、411、409、408 nm处出现紫外吸收峰,这些吸收峰均为银纳米粒子的表面共振吸收;生成的银纳米粒子具有很好的电化学性质,并对L-半胱氨酸的电化学反应显示了良好的催化活性。  相似文献   

4.
The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with dl-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the dl-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure dl-alanine, contributing to the construction of small-sized dosimeters.  相似文献   

5.
This study deals with the synthesis and physicochemical investigation of silver nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of silver nitrate with the plant extract, silver nanoparticles were rapidly fabricated. The synthesized particles were characterized by using UV–visible spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AgNPs was confirmed by noting the change in colour through visual observations as well as via UV–Vis spectroscopy. UV–Vis spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 440 nm. FTIR was used to identify the chemical composition of silver nanoparticles and Ag-capped plant extract. The presence of elemental silver was also confirmed through EDX analysis. The SEM analysis of the silver nanoparticles showed that they have a uniform spherical shape with an average size in the range of 40–78 nm. This green system showed better capping and stabilizing agent for the fine particles. Further, in vitro the antioxidant activity of Monotheca buxifolia (Flac.) and Ag-capped with the plant was also evaluated using FeCl3/K3Fe (CN)6 essay.  相似文献   

6.
The intension of current study was to determine antibacterial and drug releasing capacity of green synthesized silver nanoparticles (AgNps) with Moringa oleifera resin in the presence of Montelukast sodium and Ibuprofen. This plant gum is economic, easily available, biodegradable, safe and potential tablet binder. There was no significant study reported on the incorporation of green synthesized silver nanoparticle with plant resin in drug release. The aqueous extract of Clerodendron phlomoides was used for the bioreduction of silver nanoparticles as well as a capping agent. This green synthesized AgNps was observed in UV at 489 nm due to the SPR (Surface Plasmon Effect) effect, and the presence of protein and polyol compounds was identified by FTIR. The crystalline structure of AgNps was analyzed by XRD, elemental silver composition was measured by EDAX, morphological structure and size was revealed by SEM and TEM analysis. The antibacterial effect of green synthesized AgNps was analyzed by zone of inhibition method. Silver nanoparticles incorporated in M. oleifera plant resin and its functional groups and thermal degradation properties were characterized by FTIR and TGA, respectively. The drug release properties of the AgNps incorporated with plant resin were evaluated for the sustained release and compared with raw plant gum without AgNps consistency.  相似文献   

7.
The green synthesis of silver nanoparticles (AgNPs) has been proposed as a simple, eco-friendly and cost effective alternative to chemical and physical methods. The Rhus chinensis plant is one of the well studied medicinal plant and its galls find excellent clinical and therapeutic applications. The present study reports the use of water extract from galls of R. chinensis as a reducing agent and formation of AgNPs from silver nitrate solution by a green synthesis route. The AgNPs formation was observed visually by color change and the absorbance peak at 450 nm was observed by UV–Visible spectrophotometer. The shape, size, and morphology of synthesized AgNPs were monitored by transmission electron microscopy and field-emission scanning electron microscopy. The face centered cubic structure of AgNPs was confirmed by X-ray diffraction pattern and element composition by energy dispersive X-ray analysis. The Fourier transform infrared spectroscopy spectrum revealed that the presence of components acts as a reducing and capping agent. The antibacterial activity was performed using the agar well diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration were determined by broth dilution and spread plate method respectively. Synthesized nanoparticles were spotted as triangular and hexagonal shape and the particle size was around 150 nm.  相似文献   

8.
The stability of silver nanoparticles is controlled mainly by two major factors, namely, aggregation and oxidation. In the present study, silver nanoparticles were synthesized by using different series of reducing agents like a strong reducing agent (sodium borohydride), a mild reducing agent (tri-sodium citrate), and a weak reducing agent (glucose) with different capping agents, namely, polyvinyl pyrrolidone (PVP K 30), starch, and sodium carboxyl methyl cellulose (NaCMC). The synthesized silver nanoparticles were characterized by UV-Visible absorption spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and anti-microbial activity. The particle size of silver nanoparticles varies in the following order: sodium borohydride < tri-sodium citrate < glucose. Combination of sodium borohydride–polyvinyl pyrrolidone and tri-sodium citrate-polyvinyl pyrrolidone yields stable silver nanoparticles compared to other combinations of reducing agents and capping agents. The stability results confirmed that a refrigerated condition (8°C) was more suitable for storage of silver nanoparticles. Anti-microbial activity of silver nanoparticles synthesized in a sodium borohydride–polyvinyl pyrrolidone mixture shows a larger zone of inhibition compared to other silver nanoparticles. Anti-microbial results confirmed that the anti-microbial activity is better with smaller particle size. The size and stability of silver nanoparticles in the presence of different combinations of stabilizing and capping agents are reported.  相似文献   

9.
Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.  相似文献   

10.
Green methods are a safer alternative to natural chemical and physical methods for the synthesis of silver nanoparticles (Ag-NPs), due to their being environmentally friendly and cost effective. This study offers a new green approach using ultrasound irradiation as the reducing agent and seaweed Kappaphycus alvarezii (K. alvarezii) as the natural bio-media. The seaweed K. alvarezii/Ag-NPs was characterised by ultraviolet–visible (UV–vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope with energy dispersive X-ray (FESEM-EDX), zeta potential, and Fourier transform infrared (FTIR) studies. UV–vis shows that surface plasmon resonance (SPR) arises from this solution due to the combined oscillations from the nanoparticles. The XRD study indicates the crystalline nature of the Ag-NPs. From the TEM images, the Ag-NPs are almost spherical with an average diameter of 11.78 nm. The FTIR spectrum provides adequate evidence of phytochemicals stabilising the nanoparticles. Synthesised Ag-NPs were successfully obtained using this green method.  相似文献   

11.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   

12.
In this article, single-crystal silver slices with predominant (1 1 1) facet were synthesized at room temperature with chitosan by a facile, one-pot, and totally green method. XRD, UV-visible and infrared spectroscopy have been employed for identifying chitosan-protected silver nanoparticles (NPs), while SEM, TEM were used to confirm silver NPs orientation along the (1 1 1) direction to form various shapes such as hexagon, trapezium, triangle and so on. The results showed that chitosan, a novel environmentally benign and excellently biocompatible material, serves not only as a reducing agent but also as a stabilizer for the growth of anisotropic silver NPs. The single-crystal silver slices with major facet of (1 1 1) can be used as a surface-enhanced Raman scattering (SERS) substrate, and crystal violet (CV) as a Raman probe to evaluate its enhancement ability. It was found that the enhancement ability of the silver slices was remarkable.  相似文献   

13.
In this work, silver nanoparticles were synthesized using Salvia microphylla Kunth leaves extract as reducing agent and stabilizing agent. The effect of reaction time and plant extract amount on the biosynthesized nanoparticles were studied. The UV–Vis spectrum indicated that silver nanoparticles show a characteristic surface plasmon resonance at 427 nm. X-ray diffraction experiments show that the silver nanoparticles have a face-centered cubic crystal structure. The density of nanoparticles increases with increasing extract concentration and reaction time. TEM and SEM observations showed well-dispersed quasi-spherical nanoparticles sized in the range of 15–45 nm. The FT-IR analysis suggested the involvement of phenolic compounds in the reduction and stabilization of silver nanoparticles. Synthesized silver nanoparticles showed good antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Finally, the catalytic properties of silver nanoparticles were demonstrated through the degradation of congo red and methyl orange.  相似文献   

14.
The application of cysteine-capped silver nanoparticles synthesized using green tea as the reducing agent to immobilize lipase has been reported in the present work. The reducing property of green tea is due to the presence of polyphenolic compounds in its extract which are not oxidized at ambient atmospheric conditions and hence is a suitable reducing agent for green synthesis of nanoparticles. Cysteine-capped silver nanoparticles were synthesized under alkaline conditions by reducing the silver salt by green tea extract in the presence of cystine. Various parameters such as the cystine concentration, pH, temperature, and amount of reducing agent were standardized and their effect on the synthesis process has been initially evaluated by surface plasmon resonance peak analysis. Furthermore, the synthesized nanoparticles were also characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The particle size analysis revealed the average size of the particles to be around 20?nm. The glutaraldehyde-deactivated amino group on cysteine-capped nanoparticles was used to immobilize lipase on its surface. Both crude and immobilized lipases were checked for activity and protein content under standard assay conditions and their activity was found to be 37.7 and 24.9?U?mL?1, respectively. The lipase nanoparticle bioconjugates exhibited a good shelf life of 60 days with a marginal decrease in activity. The bioconjugates showed 15% loss in its initial activity at the end of five reusability cycles. This immobilized reusable system has the potential to be utilized for various applications pertaining to the exploitation of lipase in various industries.  相似文献   

15.
Iron and silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous sorghum extracts as both the reducing and capping agent. Silver ions were rapidly reduced by the aqueous sorghum bran extracts, leading to the formation of highly crystalline silver nanoparticles with an average diameter of 10 nm. The diffraction peaks were indexed to the face-centered cubic (fcc) phase of silver. The absorption spectra of colloidal silver nanoparticles showed a surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. Amorphous iron nanoparticles with an average diameter of 50 nm were formed instantaneously under ambient conditions. The reactivity of iron nanoparticles was tested by the H(2)O(2)-catalyzed degradation of bromothymol blue as a model organic contaminant.  相似文献   

16.
Recently, green synthesis of silver nanoparticles has attracted much curiosity in the field of life science research. In the present study, we have reported a green method for synthesis of silver nanoparticles (AgNPs) using aqueous seed extract of Phoenix sylvestris L. The green synthesized nanoparticles were characterized by aids of dynamic light scattering, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform-infrared. Further, the study demonstrate the comparative phytochemical analysis as well as antioxidant and antibacterial activity of the extract and Phoenix sylvestris seed generated nanoparticles against acne-causing pathogens, that is, by using a DPPH-scavenging assay and broth microdilution method as well as Kirby–Bauer Disk diffusion method (recommended by CLSI), respectively. Moreover, a concentration-dependent time-kill kinetic studies were also carried out to determine their antimicrobial activity. The seed extract was found a better antioxidant and AgNPs exhibited highly biocidal agent against both the test pathogens, when compared to aqueous extracts. The results obtained indicate that seed extract of P. sylvestris is suitable for synthesizing stable silver nanoparticles, which act as excellent antimicrobial agents with promising treatments for cosmetics embarrassment.  相似文献   

17.
In this report we demonstrate a green chemical approach for the synthesis of stable silver nanoparticles in aqueous medium using tyrosine as an efficient photoreducing agent. A narrow size distribution of silver nanoparticles can be achieved by this simple photoirradiation method without using any additional stabilizing agents or surfactants. Two different irradiation sources have been explored resulting in a different particle size distribution pattern in each case. Further, we show that starting from a polydisperse tyrosine synthesized silver nanoparticles sample, it is also possible to fractionate them into different size ranges. The size fractionation was achieved by a 2 stage phase transfer method employing different organic solvents. The nanoparticles synthesized were characterized using UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques.  相似文献   

18.
We present a new generic strategy to fabricate nanoparticles in the "cages" within the fibrous networks of supramolecular soft materials. As the cages can be acquired by a design-and-production manner, the size of nanoparticles synthesized within the cages can be tuned accordingly. To implement this idea, both selenium and silver were chosen for the detailed investigation. It follows that the sizes of selenium and silver nanoparticles can be controlled by tuning the pore size of the fiber networks in the material. When the concentration of the gelator is high enough, monodisperse nanoparticles can be prepared. More interestingly, the morphology of the nanoparticles can be altered: silver disks can be formed when the concentrations of both the gelator and silver nitrate are sufficiently low. As the fiber network serves as a physical barrier and semisolid support for the nanoparticles, the stability in the aqueous media and the ease of application of these nanoparticles can be substantially enhanced. This robust surfactant-free approach will not only allow the controlled fabrication of nanoparticles, but also can be applied to the fabrication of composite materials for robust applications.  相似文献   

19.
《Analytical letters》2012,45(7):1180-1189
The green synthesis of silver nanoparticles using an aqueous extract of Ferocactus echidne(a member of the cactus family) as a reducing agent is reported. It is simple, efficient, rapid, and ecologically friendly compared to chemical-mediated methods. Ferocactus echidne is a plant of high medicinal value and rich in polyphenolic antioxidants. The extraction is simple and the product rapidly reduces silver ions without involvement of any external chemical agent. The reduction of silver nanoparticles was characterized by ultraviolet-visible spectrometry as a function of time and concentration. The results show that Ferocactus echidne reduces silver ions within 6 h depending upon the concentration. Further increases in reaction time may result in a blue shift, indicating an increase in particle size, whereas concentration had a minor effect on the particle size. The structure of synthesized nanoparticles was investigated by infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and elliptical in shape with diameters of 20 to 60 nm. X-ray diffraction confirmed the formation of silver nanoparticles with an approximate 20 nm particle size calculated using the Debye-Scherer equation. Biological tests revealed that the silver nanoparticles were active against gram positive and negative bacteria( Escherichia coli and Staphylococcus aureus) and fungi (Candida albicans), indicating their broad spectrum antibiotic and antifungal abilities.  相似文献   

20.
In this study, a green chemistry method is reported for the synthesis of Ag2O nanoparticles with the utilization of starch molecules as a stabilizing agent. In particular, by simply adjusting the concentration of starch in the reaction media, the structure of A2O nanoparticles can be engineered in disc and faceted shapes, which has been analyzed by transmission electron microscopy, UV-Vis spectroscopy, and X-ray diffraction technique. In addition, antibacterial activity of the prepared Ag2O nanoparticles had been evaluated against food poisoning and pathogenic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号