首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The new barium nitridoosmate oxide (Ba6O)(OsN3)2 was prepared by reacting elemental barium and osmium (3:1) in nitrogen at 815–830 °C. The crystal structure of (Ba6O)(OsN3)2 as determined by laboratory powder X‐ray diffraction ( , No 148: a=b=8.112(1) Å, c=17.390(1) Å, V=991.0(1) Å3, Z=3), consists of sheets of trigonal OsN3 units and trigonal‐antiprismatic Ba6O groups, and is structurally related to the “313 nitrides” AE3MN3 (AE=Ca, Sr, Ba, M=V–Co, Ga). Density functional calculations, using a hybrid functional, likewise indicate the existence of oxygen in the Ba6 polyhedra. The oxidation state 4+ of osmium is confirmed, both by the calculations and by XPS measurements. The bonding properties of the OsN35? units are analyzed and compared to the Raman spectrum. The compound is paramagnetic from room temperature down to T=10 K. Between room temperature and 100 K it obeys the Curie–Weiss law (μ=1.68 μB). (Ba6O)(OsN3)2 is semiconducting with a good electronic conductivity at room temperature (8.74×10?2 Ω?1 cm?1). Below 142 K the temperature dependence of the conductivity resembles that of a variable‐range hopping mechanism.  相似文献   

3.
4.
Agostic interactions of the type Si-CH3M+ (M = alkali metal) are frequently mentioned in discussions of solid-state structures of trimethylsilyl compounds and the purpose of this work was to elucidate if they also exist in the related tert-butyl species by using density functional theory. The compounds [M2Co2(mu3-OtBu)2(mu2-OtBu)4(thf)n] (M = Na, n = 2; M = K, n = 0; M = Rb, n = 1) have been synthesised and their crystal structures determined. Close contacts of methyl groups with K atoms are observed in the solid-state structure of [K2Co2(mu3-OtBu)2(mu2-OtBu)4], and calculations of the rotational barrier of a tert-butoxy group about the axis through the C-O bond were performed. It was shown that apparent short C-CH3K distances are in this case a consequence of the packing in the extended solid-state structure.  相似文献   

5.
6.
Black single crystals of [Lu(Db18c6)(H2O)3(thf)6]4(I3)2(I5)6(I8)(I12) were obtained from lutetium, I2 and Db18c6 (dibenzo‐18‐crown‐6) in THF solution. In the bulky cation, Lu3+ is surrounded by nine oxygen atoms, six of Db18c6 and three of water molecules to which two THF molecules are attached each. Meanwhile, four polyiodide anions, (I3), (I5), (I8)2– and (I12)2–, in a 2:6:1:1 ratio form a three‐dimensional network and leave space for the bulky cations.  相似文献   

7.
The successful synthesis and structural characterization of molecules that represent segments of extended solids is a valuable strategy for learning metric and stereochemical characteristics of those solids. This approach has been useful in cases in which the solids are particularly difficult to crystallize and thus their atomic connectivity and overall structures become difficult to deduce with X-ray diffraction techniques. One such class of materials is the covalently linked C(x)N(y) extended solids, where molecular analogues remain largely absent. In particular, structures of C(3)N(4) solids are controversial. This report illustrates the utility of a simple molecule, N(C(3)N(3))(3)Cl(6), in answering the question of whether triazine based C(3)N(4) phases are layered or instead they adopt 3D structures. Here, we present density functional calculations that clearly demonstrate the lower stability of graphitic C(3)N(4) relative to 3D analogues.  相似文献   

8.
9.
Ultrafine PbZr0.20Ti0.80O3 was amorphized through high-energy mechanical milling. The structural evolution through the amorphization process was accompanied by various characterization techniques, such as X-ray diffraction, Fourier-transformed IR spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. A strong photoluminescence was measured at room temperature for amorphized PbZr0.20Ti0.80O3, and interpreted by means of high-level quantum mechanical calculations in the density functional theory framework. Three periodic models were used to represent the crystalline and amorphized PbZr0.20Ti0.80O3, and they allowed the calculation of electronic properties that are consistent with the experimental data and that explain the appearance of photoluminescence.  相似文献   

10.
11.
12.
The terminal rhenium(I) phosphaethynolate complex [Re(PCO)(CO)2(triphos)] has been prepared in a salt metathesis reaction from Na(OCP) and [Re(OTf)(CO)2(triphos)]. The analogous isocyanato complex [Re(NCO)(CO)2(triphos)] has been likewise prepared for comparison. The structure of both complexes was elucidated by X‐ray diffraction studies. While the isocyanato complex is linear, the phosphaethynolate complex is strongly bent around the pnictogen center. Computations including natural bond orbital (NBO) theory, natural resonance theory (NRT), and natural population analysis (NPA) indicate that the isocyanato complex can be viewed as a classic Werner‐type complex, that is, with an electrostatic interaction between the ReI and the NCO group. The phosphaethynolate complex [Re(P?C?O)(CO)2(triphos)] is best described as a metallaphosphaketene with a ReI–phosphorus bond of highly covalent character.  相似文献   

13.
The structure of the complex, [Fe2(II)Fe2(III)(HCOO)10(C6H7N6)n, (1) exhibits a neutral two-dimensional layer network of alternating iron(II) and iron(III) ions, bridged equatorially by formate groups. All iron atoms are octahedrally coordinated, with iron(III) coordinating axially to one gamma-picoline and one formate group, while the iron(II) centers interact axially with two gamma-picoline groups, above and below the layer plane. The complex crystallizes in the triclinic space group P1 at all studied temperatures [at 120 K, the cell dimensions are: a = 10.228(1), b = 12.071(1), c = 12.072(1) A, alpha = 89.801(2), beta = 71.149(2), gamma = 73.371(2) degrees]. An intralayer antiferromagnetic exchange interaction of J = -2.8 cm(-1) between iron(II) and iron(III) was observed in the magnetic studies. Decreasing the temperature to close to 20 K causes a magnetic-ordering phenomenon to occur and a low-temperature phase with a long-range antiferromagnetic spin orientation appears. The magnetic phase transition was confirmed by M?ssbauer spectroscopic studies at temperatures above and below the critical temperature. Structural information of 1 from synchrotron X-ray diffraction data collected at room temperature and 16 K suggests that the antiferromagnetic ordering is caused by an enhanced pi-pi interaction between chi-picoline groups from adjacent layers.  相似文献   

14.
The crystal structure of Cs2BaTa6Br15O3 has been elucidated by using synchrotron X‐ray powder diffraction and absorption experiments. It is built from edge‐bridged octahedral [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]4? cluster units with a singular poor metallic electron (ME) count equal to thirteen. This leads to a paramagnetic behaviour related to one unpaired electron. The arrangement of the Ta6 clusters is similar to that of Cs2LaTa6Br15O3 exhibiting 14‐MEs per [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]5? motif. The poorer electron‐count cluster presents longer metal–metal distances as foreseen according to the electronic structure of edge‐bridged hexanuclear cluster. Density functional theory (DFT) calculations on molecular models were used to rationalise the structural properties of 13‐ and 14‐ME clusters. Periodic DFT calculations demonstrate that the electronic structure of these solid‐state compounds is related to those of the discrete octahedral units. Oxygen–barium interactions seem to prevent the geometry of the octahedral cluster to strongly distort, allowing stabilisation of this unprecedented electron‐poor Ta6 cluster in the solid state.  相似文献   

15.
Compact and highly reactive bicyclo[1.1.0]butanes constitute one of the most fascinating classes of organic compounds. Furthermore, interplay of bicyclo[1.1.0]butanes with their valence isomers, such as buta‐1,3‐dienes and cyclobutenes, is among the fundamental pericyclic transformations in organic chemistry. Herein we report the back‐and‐forth interconversion between the cyclotrisilenes and thiatrisilabicyclo[1.1.0]butanes, allowing for the synthesis of novel representatives of such classes of highly reactive organometallics. The peculiar structural and bonding features of the newly synthesized compounds, as well as the mechanism of their isomerization, were verified both experimentally and computationally.  相似文献   

16.
An air‐ and moisture‐stable nanoscale polyhydrido copper cluster [Cu32(H)20{S2P(OiPr)2}12] ( 1H ) was synthesized and structurally characterized. The molecular structure of 1H exhibits a hexacapped pseudo‐rhombohedral core of 14 Cu atoms sandwiched between two nestlike triangular cupola fragments of (2×9) Cu atoms in an elongated triangular gyrobicupola polyhedron. The discrete Cu32 cluster is stabilized by 12 dithiophosphate ligands and a record number of 20 hydride ligands, which were found by high‐resolution neutron diffraction to exhibit tri‐, tetra‐, and pentacoordinated hydrides in capping and interstitial modes. This result was further supported by a density functional theory investigation on the simplified model [Cu32(H)20(S2PH2)12].  相似文献   

17.
18.
The metal‐coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of its interaction with copper just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, but structural details of the various metal coordination modes have not been fully elucidated in some cases. In the present study, we have employed X‐ray absorption near‐edge spectroscopy as well as extended X‐ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI, and ZnII with an N‐terminal fragment of PrP. The PrP fragment corresponds to four tandem repeats representative of the mammalian octarepeat domain, designated as OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations have provided additional structural and thermodynamic data, and candidate structures have been used to inform EXAFS data analysis. The optimized geometries from DFT calculations have been used to identify potential coordination complexes for multi‐histidine coordination of CuII, CuI, and ZnII in an aqueous medium, modelled using 4‐methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve‐fitting, using full multiple scattering on candidate structures derived from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI, and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as square‐planar [CuII(His)4]2+, digonal [CuI(His)2]+, and tetrahedral [ZnII(His)3(OH2)]2+, respectively.  相似文献   

19.
The iron complexes [(Et2Sb)4Fe4(CO)14] ( 1 ), [(nPr2Sb)4Fe3(CO)10] ( 2 ), [{(Me3SiCH2)2Sb}4Fe2(CO)6] ( 3 ), and [2‐(Me2NCH2)C6H4SbFe2(CO)8] ( 4 ) were prepared by reactions of distibanes with Fe2(CO)9. Compounds 1 – 4 were characterized by X‐ray diffraction, 1H NMR and IR spectroscopy as well as mass spectrometry; complex 1 was additionally characterized by density functional calculations.  相似文献   

20.
A Cu(2+)-templated, multinuclear, nonfluorescent, anti-[3]pseudorotaxane was synthesized on a fluorophoric axle. The Cu(2+)-templated [3]pseudorotaxane was characterized by the electrospray ionization mass spectroscopy (ESI-MS), UV/Vis and EPR spectroscopy, and single-crystal X-ray data. The ESI-MS showed peaks that support the formation of [3]pseudorotaxane. The UV/Vis spectrum of [3]pseudorotaxane in CH(3)CN showed a characteristic d-d band of a Cu(2+) complex at 650 nm. Further, the X-band in the EPR spectrum of [3]pseudorotaxane suggested a distorted square-pyramidal geometry of Cu(2+). Importantly, formation of the [3]pseudorotaxane was confirmed by the single-crystal X-ray structural analysis, which showed that one fluorophoric axle was threaded into two Cu(2+) macrocyclic wheels (MC-Cu(2+)) with an anti conformation. The UV/Vis and fluorescence titration experiments were carried out to follow the solution-state formation of [3]pseudorotaxane by MC-Cu(2+) and fluorophoric axle in CH(3)CN. In both studies, the sigmoidal curve fit supported the formation of 1:2 complex of the fluorophoric axle and MC-Cu(2+) complex. Secondly, the release of the fluorophoric axle from the nonfluorescent [3]pseudorotaxane through the formation of a [2]pseudorotaxane was demonstrated by titrating a solution of the [3]pseudorotaxane with a stronger bidentate chelating ligand, such as 1,10-phenanthroline (Phen). Substitution of the fluorophoric axle from the [3]pseudorotaxane with about 100% efficiency was achieved by the addition of approximately two equivalents of Phen, and the formation of a Phen-threaded [2]pseudorotaxane was established by ESI-MS of the resulting solution and a single-crystal X-ray study. Axle substitution was also confirmed by a fluorescence titration experiment, which showed a step-wise recovery of the fluorescence intensity of the fluorophoric axle. The association constants for the formation of the [3]- and [2]pseudrotaxanes were calculated from the fluorescence and UV/Vis data. In addition, 2,2'-bipyridine (BPy), which is a relatively weaker bidendate chelating ligand compared to Phen, showed an inefficient and incomplete axle substitution of the [3]pseudorotaxane, although BPy previously showed the formation of [2]pseudrotaxane with the MC-Cu(2+) wheel in solution and ESI-MS studies. In this context, the formation of a BPy-threaded [2]pseudrotaxane was further established by single-crystal X-ray diffraction study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号