首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposing [Bi(OR)3(toluene)]2 (1, R = OC6F5) to different solvents leads to the formation of larger polymetallic bismuth oxo alkoxides via ether elimination/oligomerization reactions. Three different compounds were obtained depending upon the conditions: Bi4(mu 4-O)(mu-OR)6(mu 3-OBi(mu-OR)3)2(C6H5CH3) (2), Bi8(mu 4-O)2(mu 3-O)2(mu 2-OR)16 (3), Bi6(mu 3-O)4(mu 3-OR)(mu 3-OBi(OR)4)3 (4). Compounds 2 and 3 can also be synthesized via an alcoholysis reaction between BiPh3 and ROH in refluxing dichloromethane or chloroform. Related oxo complexes NaBi4(mu 3-O)2(OR)9(THF)2 (5) and Na2Bi4(mu 3-O)2(OR)10(THF)2 (6) were obtained from BiCl3 and NaOR in THF. The synthesis of 1 and Bi(OC6Cl5)3 via salt elimination was successful when performed in toluene as solvent. For compounds 2-6 the single-crystal X-ray structures were determined. Variable-temperature NMR spectra are reported for 2, 3, and 5.  相似文献   

2.
A pyrazolate-based dinucleating ligand of the bis(alpha-diimine) type forms an unusual hexanucler nickel(II) cage complex incorporating an interstitial mu 6-Cl atom.  相似文献   

3.
4.
5.
6.
The reaction of copper(I) iodide with tri-m-tolylphosphine (m-tolyl(3)P) in acetonitrile yielded the cluster [Cu(6)(mu2-I)(mu3-I)4(mu4-I)(m-tolyl(3)P)4(CH(3)CN)2] (1), with a bicapped adamantoid geometry. In this compound, four Cu atoms are coordinated to four terminally bonded m-tolyl(3)P ligands, two Cu atoms are bonded to two CH(3)CN ligands, and iodide ligands have mu2-I, mu3-I, and mu4-I bonding modes. This compound has four CuI(3)P and two CuI(3)N cores, and geometry around each Cu center is distorted tetrahedral.The polarizable iodide ligand and the position of the methyl group in the phenyl ring attached to the P atom appear to have played the pivotal role in the formation of monomeric bicapped adamantoid geometry, which is unique in copper chemistry.  相似文献   

7.
Treatment of the mu3-ethylidyne complex [{TiCp*(mu-O)}3(mu3-CMe)](1), (Cp*=eta5-C5Me5) with alkali metal amides leads to the oxoheterometallocubane derivatives [M(mu3-O)3{(TiCp*)3(mu3-CCH2)}] [M = Li (2), Na (3), K (4), Rb (5), Cs (6)] containing the naked carbanion mu3-CCH2-; the addition of triphenylmethanol and tert-butanol to the compounds 2-6 gives rise to the oxoderivatives [{TiCp*(mu-O)}3(mu-CHMe)(OCR3)][R = Me (7), Ph (8)] which show a mu-ethylidene bridge on the surface model Ti3O3.  相似文献   

8.
9.
Reactions of hexanuclear carbonyl clusters of rhodium Rh(6)(CO)(16) and ruthenium Ru(6)(eta(6)-C)(micro(2)-CO)(CO)(16) with GaCp*(Cp*= C(5)Me(5)) in the mild conditions result in substitution of CO ligands and formation of the Rh(6)(CO)(12)(micro(3)-GaCp*)(4) and the Ru(6)(eta(6)-C)(micro(2)-CO)(CO)(13)(micro(3)-GaCp*)(2)(micro(2)-GaCp*) cluster derivatives.  相似文献   

10.
11.
The Unusual Transformation of P(SnMe3)3 to P4(SnMe2)6 The stannylated phosphine P(SnMe3)3 reacts in the presence of small amounts of [(ZnCl)2Fe(CO)4(THF)2] in THF (tetrahydrofurane) at room temperature forming insoluble P4(SnMe2)6 ( 1 ). This compound crystallizes as colourless needles directly from the reaction mixture (space group Cmcm, a = 1593.6(3) pm, b = 1118.2(2), c = 1602.5(3), Z = 4). Reaction of ZnCl2 with P(SnMe3)3 under the same reaction conditions leads to the complex [ZnCl2{P(SnMe3)3}THF] ( 2 ) (space group Pccn, a = 1593, 6(3) pm, b = 1118, 2(2), c = 1602, 5(3), Z = 8.  相似文献   

12.
Acetonitrile and the potent oxidative fluorinating agent XeF6 react at ?40 °C in Freon‐114 to form the highly energetic, shock‐sensitive compounds F6XeNCCH3 ( 1 ) and F6Xe(NCCH3)2?CH3CN ( 2 ?CH3CN). Their low‐temperature single‐crystal X‐ray structures show that the adducted XeF6 molecules of these compounds are the most isolated XeF6 moieties thus far encountered in the solid state and also provide the first examples of XeVI? N bonds. The geometry of the XeF6 moiety in 1 is nearly identical to the calculated distorted octahedral (C3v) geometry of gas‐phase XeF6. The C2v geometry of the XeF6 moiety in 2 resembles the transition state proposed to account for the fluxionality of gas‐phase XeF6. The energy‐minimized gas‐phase geometries and vibrational frequencies were calculated for 1 and 2 , and their respective binding energies with CH3CN were determined. The Raman spectra of 1 and 2 ?CH3CN were assigned by comparison with their calculated vibrational frequencies and intensities.  相似文献   

13.
Orto PJ  Nichol GS  Wang R  Zheng Z 《Inorganic chemistry》2007,46(21):8436-8438
The first [Re(6)(mu(3)-Se)(8)](2+) core-containing cluster carbonyls, [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) and trans-[Re(6)(mu(3)-Se)(8)(PEt(3))4(CO)(2)][SbF(6)](2), were produced by reacting [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I and trans-[Re(6)(mu(3)-Se)8(PEt(3))(4)I2], respectively, with AgSbF(6) in CO-saturated dichloromethane solutions. Spectroscopic and crystallographic studies suggest significant cluster-to-CO back-donation in these novel cluster derivatives and interesting electronic structures. Thermal and photolytic studies of the mono-carbonyl complex revealed its interesting and synthetically useful reactivity in producing new cluster derivatives.  相似文献   

14.
The reactions of [M3(CO)12] (M=Ru or Fe) with 1,2 bis[(diphenylphosphino)methyl]benzene diselenide (dpmbSe2) in hot toluene afford a variety of phosphine-substituted selenido carbonyl clusters. They belong to the following three families: (i) 50-electron clusters with a M3Se2 core (2, 3, 5-7), (ii) 48-electron clusters with a M3Se core (1, 8), (iii) 34-electron clusters with a M2Se2 core (4). All these species derive from the P=Se bond cleavage. Cluster 1, which contains a hydrido, a phosphido, and a carbene ligand, is produced by multiple fragmentation of the diphosphine. This fragmentation appears related to the presence of the selenido ligand on the cluster, as the reaction of [Ru3(CO)12] with dpmb (not selenized) produces only carbonyl substitution by the phosphine to give [Ru3(CO)10(mu-dpmb)] (9). All the clusters synthesized have been characterized by spectroscopic techniques, and in some cases fluxional behavior has been detected in solution by NMR analysis. The structures of 1, 2, and 7-9 have been determined by X-ray diffraction methods.  相似文献   

15.
16.
17.
Reaction of Mn(ClO4)2 with di-pyridyl ketone oxime, (2-py)2C=NOH, gives the novel cluster [Mn(II)4Mn(III)6Mn(IV)2(mu4-O)2(mu3-O)4(mu3-OH)4(mu3-OCH3)2(pko)12](OH)(ClO4)3 1. It is the only example of a 24-MC-8, and the first metallacrown with ring metal ions in three different oxidation states. Magnetic measurements show antiferromagnetic behavior.  相似文献   

18.
Treatment of aluminum nitrate with an organic nitroso-containing compound yields the "flat", tridecameric nanocluster Al 13(mu 3-OH) 6(mu 2-OH) 18(H 2O) 24(NO 3) 15 ( Al 13 ) in good yield on a preparative scale under ambient conditions. Synthetic procedures yielding two different single-crystal forms of the Al 13 cation with two varying counterion compositions are described.  相似文献   

19.
Interaction of 4,4-bi(1,2,4-triazole) (btr) with copper(II) chloride (bromide) in aqueous or aqueous alcohol media led to a series of coordination polymers featuring the formation of mu 3-hydroxotricopper(II) clusters and their integration into 3D frameworks. These unprecedented structures originate in the propagation of trigonal hydroxotricopper(II) clusters bridged by tri- or tetradentate organic ligands. Complex [{Cu3(mu3-OH)}{Cu3(mu3-O)}(mu4-btr)3(H2O)4(OH)2Cl6]Cl.0.5H2O adopts a structure of SrSi2 topology, with eight-fold interpenetration of the coordination frameworks. The structure of [{Cu3(mu3-OH)}2(mu3-btr)6(mu4-btr)(mu-X)X4]X5.nH2O (X = Br, n = 6; X = Cl, n = 8) involves 2D coordination layers [{Cu3(mu3-OH)}(mu3-btr)3]n with an exceptional (3,6)-net topology, which are cross-linked by tetradentate btr ligands and bridging chloride (bromide) ions.  相似文献   

20.
Large, non‐symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square–planar coordination of tetravalent PdII, yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L 6 containing 60 well‐defined chiral centers in its flower‐like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L 3Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations. Furthermore, a mixture of two constitutional isomers of trimer, 2 and 2′ , and dimer, 3 and 3′ , can be obtained directly from L by its coordination to trans‐ or cis‐N‐pyridyl‐coordinating PdII. These intriguing, water‐resistant, stable supramolecular assemblies have been thoroughly described by 1H DOSY NMR, mass spectrometry, circular dichroism, molecular modelling, and drift tube ion‐mobility mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号