首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lo KK  Chung CK  Lee TK  Lui LH  Tsang KH  Zhu N 《Inorganic chemistry》2003,42(21):6886-6897
We report the synthesis, characterization, and photophysical and electrochemical properties of thirty luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)(2)(N-N)](PF(6)) (HN-C = 2-phenylpyridine, Hppy; 2-(4-methylphenyl)pyridine, Hmppy; 3-methyl-1-phenylpyrazole, Hmppz; 7,8-benzoquinoline, Hbzq; 2-phenylquinoline, Hpq; N-N = 4-amino-2,2'-bipyridine, bpy-NH(2); 4-isothiocyanato-2,2'-bipyridine, bpy-ITC; 4-iodoacetamido-2,2'-bipyridine, bpy-IAA; 5-amino-1,10-phenanthroline, phen-NH(2); 5-isothiocyanato-1,10-phenanthroline, phen-ITC; 5-iodoacetamido-1,10-phenanthroline, phen-IAA). The X-ray crystal structure of [Ir(mppz)(2)(bpy-NH(2))](PF(6)) has also been investigated. Upon irradiation, all the complexes display intense and long-lived luminescence under ambient conditions and in 77-K glass. On the basis of the photophysical and electrochemical data, the emission of most of these complexes is assigned to an excited state of predominantly triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi(N-N)) character. In some cases, triplet intraligand ((3)IL) (pi --> pi)(N-N or N-C(-)) excited states have also been identified. In view of the specific reactivity of the isothiocyanate and iodoacetamide moieties toward the primary amine and sulfhydryl groups, respectively, we have labeled various biological molecules with a selection of these luminescent iridium(III) complexes. The photophysical properties of the luminescent conjugates have been investigated. In addition, a heterogeneous assay for digoxin has also been designed on the basis of the recognition of biotinylated anti-digoxin by avidin labeled with one of the luminescent iridium(III) complexes.  相似文献   

2.
Lo KK  Lau JS 《Inorganic chemistry》2007,46(3):700-709
Four luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)2(N-N)](PF6) (HN-C = 2-(4-(N-((2-biotinamido)ethyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC2NH-biotin, N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (1a); N-N = 4,7-diphenyl-1,10-phenanthroline, Ph2-phen (2a); HN-C = 2-(4-(N-((6-biotinamido)hexyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC6NH-biotin, N-N = Me4-phen (1b); N-N = Ph2-phen (2b)), each containing two biotin units, have been synthesized and characterized. The photophysical and electrochemical properties of these complexes have been investigated. Photoexcitation of these iridium(III) diimine bis(biotin) complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission is assigned to a triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Ir) --> pi*(N-N)) excited state. The emissive states of complexes 1a,b are probably mixed with some 3IL (pi --> pi*) (Me4-phen) character. The interactions of these iridium(III) diimine bis(biotin) complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays and emission titrations. The potential for these complexes to act as cross-linkers for avidin has been examined by resonance-energy transfer- (RET-) based emission quenching experiments, microscopy studies using avidin-conjugated microspheres, and HPLC analysis.  相似文献   

3.
Lee PK  Law WH  Liu HW  Lo KK 《Inorganic chemistry》2011,50(17):8570-8579
A series of luminescent cyclometalated iridium(III) polypyridine complexes containing a di-2-picolylamine (DPA) moiety [Ir(N^C)(2)(phen-DPA)](PF(6)) (phen-DPA = 5-(di-2-picolylamino)-1,10-phenanthroline) (HN^C = 2-phenylpyridine, Hppy (1a), 2-(4-methylphenyl)pyridine, Hmppy (2a), 2-phenylquinoline, Hpq (3a), 4-(2-pyridyl)benzaldehyde, Hpba (4a)) and their DPA-free counterparts [Ir(N^C)(2)(phen-DMA)](PF(6)) (phen-DMA = 5-(dimethylamino)-1,10-phenanthroline) (HN^C = Hppy (1b), Hmppy (2b), Hpq (3b), Hpba (4b)) have been synthesized and characterized, and their photophysical and electrochemical properties investigated. Photoexcitation of the complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission of the complexes has been assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dπ(Ir) → π*(N^N)) or triplet intraligand ((3)IL) (π → π*) (N^C) excited state and with substantial mixing of triplet amine-to-ligand charge-transfer ((3)NLCT) (n → π*) (N^N) character, depending on the identity of the cyclometalating and diimine ligands. Electrochemical measurements revealed an irreversible amine oxidation wave at ca. +1.1 to +1.2 V vs saturated calomel electrode, a quasi-reversible iridium(IV/III) couple at ca. +1.2 to +1.6 V, and a reversible diimine reduction couple at ca. -1.4 to -1.5 V. The cation-binding properties of these complexes have been studied by emission spectroscopy. Upon binding of zinc ion, the iridium(III) DPA complexes displayed 1.2- to 5.4-fold emission enhancement, and the K(d) values determined were on the order of 10(-5) M. Job's plot analysis confirmed that the binding stoichiometry was 1:1. Additionally, selectivity studies showed that the iridium(III) DPA complexes were more sensitive toward zinc ion among various transition metal ions examined. Furthermore, the cytotoxicity of these complexes toward human cervix epithelioid carcinoma cells have been studied by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay and their cellular-uptake properties by inductively coupled plasma mass spectrometry and laser-scanning confocal microscopy.  相似文献   

4.
A new class of luminescent molecular hybrids in which eight cyclometalated iridium(III) polypyridine complexes are grafted onto a polyhedral oligomeric silsesquioxane (POSS) unit [POSS-{Ir(N^C)2(py-im)}8](PF6)8 [py-im=pyridine imine; HN^C=N-phenylpyrazole (Hppz) ( 1 a ), 2-phenylpyridine (Hppy) ( 2 a ), 2-phenylquinoline (Hpq) ( 3 a )] were synthesized and characterized. On photoexcitation, the complexes showed intense and long-lived orange-red to red emission in fluid solutions at room temperature and in low-temperature glasses. The photophysical properties including aggregation-induced emission and biological properties of these complexes were studied and compared with those of their POSS-free counterparts [Ir(N^C)2(py-im)](PF6) [HN^C=Hppz ( 1 b ), Hppy ( 2 b ), Hpq ( 3 b )]. The (photo)cytotoxicity of the complexes was examined by the MTT assay, and their cellular uptake and intracellular localization were investigated by inductively coupled plasma-mass spectrometry and laser-scanning confocal microscopy.  相似文献   

5.
We report the synthesis, characterization, photophysical, and electrochemical properties of a series of luminescent cyclometalated iridium(III) complexes containing two aldehyde functional groups [Ir(pba)(2)(N-N)](PF(6)) (Hpba=4-(2-pyridyl)benzaldehyde; N-N=2,2'-bipyridine, bpy (1), 1,10-phenanthroline, phen (2), 3,4,7,8-tetramethyl-1,10-phenanthroline, 3,4,7,8-Me(4)-phen (3), 4,7-diphenyl-1,10-phenanthroline, 4,7-Ph(2)-phen (4)). The X-ray crystal structure of complex 1 has been investigated. Upon photoexcitation, complexes 1-4 exhibit intense and long-lived emission in fluid solutions at 298 K and in low-temperature glass. The luminescence is assigned to a triplet intra-ligand ((3)IL) excited state associated with the pba(-) ligand, probably with mixing of some triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir)-->pi*(pba(-))) character. Since each of these complexes possesses two aldehyde groups, which can react with the primary amine groups of biomolecules to form stable secondary amines after reductive amination, we have investigated the possibility of these complexes as novel luminescent cross-linkers for biological substrates. L-Alanine has been labeled with complexes 1-4 to give the luminescent bioconjugates 1-(Ala)(2)-4-(Ala)(2). These conjugates show strong photoluminescence with long emission lifetimes under ambient conditions. On the basis of the emission energy trend, the excited state of these luminescent bioconjugates is likely to bear a high parentage of (3)MLCT (dpi(Ir)-->pi*(N-N)) character. In addition, the glycoprotein avidin (Av) has also been conjugated with complexes 1-4 to give the bioconjugates 1-Av-4-Av. Upon photoexcitation, these bioconjugates also display intense and long-lived (3)MLCT (dpi(Ir)-->pi*(N-N)) emission in aqueous buffer at 298 K. Furthermore, a heterogeneous competitive assay for biotin has been developed using 2-Av and biotinylated microspheres. We have shown that complexes 1-4 represent a new class of multicolor luminescent cross-linkers for biomolecular species.  相似文献   

6.
A new class of phosphorescent cyclometalated iridium(III)–polyamine complexes [{Ir(N^C)2}n(bPEI)](PF6)n (bPEI=branched poly(ethyleneimine), average Mw=25 kDa, n=15.6–27.4; HN^C=2‐phenylpyridine Hppy ( 1 a ), 2‐((1,1′‐biphenyl)‐4‐yl)pyridine Hpppy ( 2 a ), 2‐phenylquinoline Hpq ( 3 a ), 2‐phenylbenzothiazole Hbt ( 4 a ), 2‐(1‐naphthyl)benzothiazole Hbsn ( 5 a )) and [Ir(N^C)2(en)](PF6) (en=ethylenediamine; HN^C=Hppy ( 1 b ), Hpppy ( 2 b ), Hpq ( 3 b ), Hbt ( 4 b ), Hbsn ( 5 b )) have been synthesized and characterized. The X‐ray crystal structure of complex 5 b was also determined. All of these complexes showed a reversible iridium(IV/III) oxidation couple at +1.01 to +1.26 V and a quasi‐reversible ligand‐based reduction couple at ?1.54 to ?2.08 V (versus SCE). Upon photoexcitation, the complexes displayed intense and long‐lived green to orange–red emission in fluid solutions at room temperature and in low‐temperature glass. Lipophilicity measurements indicated that bPEI played a dominant role in the polar nature of complexes 1 a – 5 a , thus rendering them very soluble in aqueous solutions. Inductively coupled plasma–mass spectrometry (ICP‐MS) and confocal laser scanning microscopy (CLSM) data indicated that an energy‐requiring process, such as endocytosis, was involved in the cellular uptake of all of the complexes. In addition, the cytotoxicity of the complexes toward human cervix epithelioid carcinoma (HeLa) and human embryonic kidney 293T (HEK293T) cell‐lines has been evaluated by the 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The DNA‐binding properties of complex 5 a have been investigated by gel‐retardation assays and the polyplexes that were formed from this complex with plasmid DNA (pDNA) were studied by zeta‐potential measurements and particle‐size estimation. Furthermore, complex 5 a was grafted with poly(ethylene glycol) (PEG, average Mw=2 kDa) to different extents, thereby yielding the phosphorescent copolymers PEG12.3g‐5 a , PEG25.4g‐5 a , and PEG62.1g‐5 a . Interestingly, these copolymers showed enhanced transfection activity, as revealed by in vitro transfection experiments with tissue‐culture‐based luciferase assays.  相似文献   

7.
Six luminescent cyclometalated iridium(III)-dipyridoquinoxaline and -dipyridophenazine complexes [Ir(ppy)2(N-N)](PF6) (Hppy = 2-phenylpyridine; N-N = dipyrido[3,2-f:2',3'-h]quinoxaline, dpq (1); 2-n-butylamidodipyrido[3,2-f:2',3'-h]quinoxaline, dpqa (2); 2-((2-biotinamido)ethyl)amidodipyrido[3,2-f:2',3'-h]quinoxaline, dpqB (3); dipyrido[3,2-a:2',3'-c]phenazine, dppz (4); benzo[i]dipyrido[3,2-a:2',3'-c]phenazine, dppn (5); 11-((2-biotinamido)ethyl)amidodipyrido[3,2-a:2',3'-c]phenazine, dppzB (6)) have been designed as luminescent intercalators for DNA and probes for avidin. The structure of complex 4 has been studied by X-ray crystallography. The photophysical and electrochemical properties of the complexes have also been investigated. The binding of these complexes to double-stranded calf thymus DNA and synthetic double-stranded oligonucleotides poly(dA) x poly(dT) and poly(dG) x poly(dC) has been investigated by spectroscopic titrations. The interactions between the two biotin-containing complexes and avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays and emission titrations.  相似文献   

8.
We report the synthesis, characterization, and photophysical properties of a new class of luminescent cyclometalated iridium(III) polypyridine poly(ethylene glycol) (PEG) complexes [Ir(N^C)2(N^N)](PF6) (HN^C=Hppy (2‐phenylpyridine), N^N=bpy? CONH? PEG1 (bpy=2,2′‐bipyridine; 1 a ), bpy? CONH? PEG3 ( 1 b ); HN^C=Hpq (2‐phenylquinoline), N^N=bpy? CONH? PEG1 ( 2 a ), bpy? CONH? PEG3 ( 2 b ); HN^C=Hpba (4‐(2‐pyridyl)benzaldehyde), N^N=bpy? CONH? PEG1 ( 3 )) and their PEG‐free counterparts (N^N=bpy? CONH? Et, HN^C=Hppy ( 1 c ); HN^C=Hpq ( 2 c )). The cytotoxicity and cellular uptake of these complexes have been investigated by the MTT assay, ICPMS, laser‐scanning confocal microscopy, and flow cytometry. The results showed that the complexes supported by the water‐soluble PEG can act as biological probes and labels with considerably reduced cytotoxicity. Because the aldehyde groups of complex 3 are reactive toward primary amines, the complex has been utilized as the first luminescent PEGylation reagent. Bovine serum albumin (BSA) and poly(ethyleneimine) (PEI) have been PEGylated with this complex, and the resulting conjugates have been isolated, purified, and their photophysical properties studied. The DNA‐binding and gene‐delivery properties of the luminescent PEI conjugate 3 ‐PEI have also been investigated.  相似文献   

9.
Lo KK  Hui WK 《Inorganic chemistry》2005,44(6):1992-2002
This paper describes the design of a series of luminescent rhenium(I) polypyridine biotin complexes containing different spacer-arms, [Re(N-N)(CO)3 (py-4-CH2-NH-biotin)](PF6) (py-4-CH2-NH-biotin = 4-(biotinamidomethyl)pyridine; N-N = 1,10-phenanthroline, phen (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (2a), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, Me2-Ph2-phen (3a), dipyrido[3,2-f:2',3'-h]quinoxaline, dpq (4a)), [Re(N-N)(CO)3 (py-3-CO-NH-en-NH-biotin)](PF6) (py-3-CO-NH-en-NH-biotin = 3-(N-((2-biotinamido)ethyl)amido)pyridine; N-N = phen (1b), Me4-phen (2b), Me2-Ph2-phen (3b), dpq (4b)), and [Re(N-N)(CO)3 (py-4-CH2-NH-cap-NH-biotin)](PF6) (py-4-CH2-NH-cap-NH-biotin = 4-(N-((6-biotinamido)hexanoyl)aminomethyl)pyridine; N-N = phen (1c), Me4-phen (2c), Me2-Ph(2)-phen (3c), dpq (4c)). Upon irradiation, all of the rhenium(I)-biotin complexes exhibited intense and long-lived triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi* (diimine)) emission in fluid solutions at 298 K. The interactions of these biotin-containing complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, emission titrations, and competitive association and dissociation assays. On the basis of the results of these experiments, homogeneous assays for biotin and avidin have been designed.  相似文献   

10.
Four luminescent ruthenium(II) polypyridine estradiol complexes [Ru(NwedgeN)2(bpy-estradiol)](PF6)2 (NwedgeN = 2,2'-bipyridine (bpy), 4,7-diphenyl-1,10-phenanthroline (Ph2-phen); bpy-estradiol = 5-(4-(17alpha-ethynylestradiolyl)phenyl)-2,2'-bipyridine (bpy-ph-est), 4-(N-(6-(4-(17alpha-ethynylestradiolyl)benzoylamino)hexyl)aminomethyl)-4'-methyl-2,2'-bipyridine (mbpy-C6-est)) have been designed as new luminescent biological probes. The lipophilicity and photophysical and electrochemical properties of these complexes have been investigated. Upon photoexcitation, all the complexes exhibited intense and long-lived triplet metal-to-ligand charge-transfer (3MLCT) (dpi(Ru) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. The binding of the complexes to estrogen receptor-alpha (ERalpha) has been studied by emission titrations. The Ph2-phen complexes showed emission enhancement and increased lifetimes upon binding to the protein. Additionally, the cytotoxicity of the complexes toward the HeLa cell line has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and the IC50 values ranged from 83.1 to 166.6 microM (cisplatin showed an IC50 value of 34.3 microM under the same experimental conditions). Furthermore, the cellular uptake of the complexes has been investigated by flow cytometry and laser-scanning confocal microscopy.  相似文献   

11.
We report here the design of the first class of luminescent biotinylation reagents derived from rhenium(I) polypyridine complexes. These complexes [Re(N-N)(CO)(3)(py-biotin-NCS)](PF(6)) (py-biotin-NCS = 3-isothiocyanato-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = 1,10-phenanthroline (phen) (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me(4)-phen) (2a), 4,7-diphenyl-1,10-phenanthroline (Ph(2)-phen) (3a)), containing a biotin unit and an isothiocyanate moiety, have been synthesized from the precursor amine complexes [Re(N-N)(CO)(3)(py-biotin-NH(2))](PF(6)) (py-biotin-NH(2) = 3-amino-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = phen (1c), Me(4)-phen (2c), Ph(2)-phen (3c)). To investigate the amine-specific reactivity of the isothiocyanate complexes 1a-3a, they have been reacted with a model substrate ethylamine, resulting in the formation of the thiourea complexes [Re(N-N)(CO)(3)(py-biotin-TU-Et)](PF(6)) (py-biotin-TU-Et = 3-ethylthioureidyl-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = phen (1b), Me(4)-phen (2b), Ph(2)-phen (3b)). All the rhenium(I) complexes have been characterized, and their photophysical properties have been studied. The avidin-binding properties of the thiourea complexes 1b-3b have been examined by the 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assay. Titration results indicated that the complexes exhibited emission enhancement by ca. 1.4-1.5-fold upon binding to avidin, and the lifetimes were elongated to ca. 0.8-2.0 micros. Additionally, we have biotinylated bovine serum albumin (BSA) with the isothiocyanate complexes. All the resultant rhenium-BSA bioconjugates displayed intense and long-lived orange-yellow to greenish-yellow emission upon irradiation in aqueous buffer under ambient conditions. The avidin-binding properties of the bioconjugates have been investigated using the HABA assay. Furthermore, the cytotoxicity of the thiourea complexes 1b-3b toward the HeLa cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 values were determined to be ca. 17.5-28.5 microM, which are comparable to that of cisplatin (26.7 microM) under the same conditions. The cellular uptake of complex 3b has been investigated by fluorescence microscopy, and the results showed that the complex was localized in the perinuclear region after interiorization.  相似文献   

12.
Lo KK  Tsang KH  Hui WK  Zhu N 《Inorganic chemistry》2005,44(17):6100-6110
We report the synthesis, characterization, and photophysical and electrochemical properties of a series of luminescent rhenium(I) diimine indole complexes, [Re(N-N)(CO)3(L)](CF3SO3) (N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-phen), L = N-(3-pyridoyl)tryptamine (py-3-CONHC2H4-indole) (1a), N-[N-(3-pyridoyl)-6-aminohexanoyl]tryptamine, (py-3-CONHC5H10CONHC2H4-indole) (1b); N-N = 1,10-phenanthroline (phen), L = py-3-CONHC2H4-indole (2a), py-3-CONHC5H10CONHC2H4-indole (2b); N-N = 2,9-dimethyl-1,10-phenanthroline (Me2-phen), L = py-3-CONHC2H4-indole (3a), py-3-CONHC5H10CONHC2H4-indole (3b); N-N = 4,7-diphenyl-1,10-phenanthroline (Ph2-phen), L = py-3-CONHC2H4-indole (4a), py-3-CONHC5H10CONHC2H4-indole (4b)), and their indole-free counterparts, [Re(N-N)(CO)3(py-3-CONH-Et)](CF3SO3) (py-3-CONH-Et = N-ethyl-(3-pyridyl)formamide; N-N = Me4-phen (1c), phen (2c), Me2-phen (3c), Ph2-phen (4c)). The X-ray crystal structure of complex 3a has also been investigated. Upon irradiation, most of the complexes exhibited triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. However, the structural features and long emission lifetimes of the Me4-phen complexes in solutions at room temperature suggest that the excited state of these complexes exhibited substantial triplet intraligand (3IL) (pi --> pi*) (Me4-phen) character. The binding interactions of these complexes to indole-binding proteins including bovine serum albumin and tryptophanase have been examined.  相似文献   

13.
Yip JH  Suwarno  Vittal JJ 《Inorganic chemistry》2000,39(16):3537-3543
Four cyclometalated Pt(II) complexes, [PtL(L')][ClO4] [HL = 6-phenyl-2,2'-bipyridine; L' = pyridine (1), 4-aminopyridine (2), 2-aminopyridine (3), 2,6-diaminopyridine (4)], were designed and synthesized to probe intramolecular N...Pt interactions. The crystal structures of the compounds show that the pyridine ligands are almost perpendicular to the planes of the molecules. In addition, the pendant NH2 groups of the 2-aminopyridine and 2,6-diaminopyridine ligands are close to the metal centers in complexes 3 and 4, with the Pt-N(H2) distances (3.065(3)-3.107(3) A) significantly shorter than the sum of the van der Waals radii of Pt and N. These compounds were also studied by electronic spectroscopy. All the complexes display intense intraligand pi-->pi* transitions at 200-340 nm (epsilon = 10(4)-10(3) M-1 cm-1) and moderately intense (epsilon approximately 10(3) M-1 cm-1) metal (Pt)-to-ligand (pi*) charge-transfer (MLCT) transitions. For 1 and 2, the MLCT transitions occur at approximately 390 nm, but the MLCT transition of 4 is exceptionally low in energy (492 nm). The low-temperature emission spectra of the complexes in frozen EMD glass indicate that 3 pi pi* is the emissive excited state for 1 and 2 but the emission of 3 is from a 3MLCT excited state. On the basis of the spectroscopic results, the order of energy of the MLCT excited states is established as 1 approximately 2 > 3 > 4. It is proposed that the red shifts of the MLCT transitions in 3 and 4 are due to increased electron-donating abilities of the ancillary pyridine ligands and intramolecular interactions between the orbitals of amine nitrogen lone pairs. Crystal data for the complexes are as follows. 1: triclinic P1, Z = 2, a = 8.7917(2) A, b = 10.6398(3) A, c = 11.9592(3) A, alpha = 107.130(1) degrees, beta = 92.522(1) degrees, gamma = 111.509(1) degrees. 2.CH3CN: triclinic P1, Z = 2, a = 7.0122(4) A, b = 12.9653(8) A, c = 14.0283(9) A, alpha = 107.3100(10) degrees, beta = 102.7640(10) degrees, gamma = 91.6320(10) degrees. 3.CH3CN: triclinic P1, Z = 2, a = 7.6459(1) A, b = 10.8433(1) A, c = 14.8722(2) A, alpha = 99.383(1) degrees, beta = 93.494(1) degrees, gamma = 101.385(1) degrees. 4.CH3CN: triclinic P1, Z = 2, a = 7.862(2) A, b = 10.977(3) A, c = 14.816(5) A, alpha = 99.34(2) degrees, beta = 92.64(2) degrees, gamma = 104.11(2) degrees.  相似文献   

14.
Four copper complexes with hydroxylated bipyridyl-like ligands, namely [Cu(2)(ophen)(2)] (1), [Cu(4)(ophen)(4)(tp)] (2), [Cu(4)(obpy)(4)(tp)] (3), and [Cu(4)(obpy)(4)(dpdc)].2H(2)O (4), (Hophen=2-hydroxy-1,10-phenanthroline, Hobpy=6-hydroxy-2,2'-bipyridine, tp=terephthalate, dpdc=diphenyl-4,4'-dicarboxylate) have been synthesized hydrothermally. X-ray single-crystal structural analyses of these complexes reveal that 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy) ligands are hydroxylated into ophen or obpy during the reaction, which provides structural evidence for the long-time argued Gillard mechanism. The dinuclear copper(I) complex 1 has three supramolecular isomers in the solid state, in which short copper-copper distances (2.66-2.68 A) indicate weak metal-metal bonding interactions. Each of the mixed-valence copper(i,ii) complexes 2-4 consists of a pair of [Cu(2)(ophen)(2)](+) or [Cu(2)(obpy)(2)](+) fragments bridged by a dicarboxylate ligand into a neutral tetranuclear dumbbell structure. Dinuclear 1 is an intermediate in the formation of 2 and can be converted into 2 in the presence of additional copper(II) salt and tp ligands under hydrothermal conditions. In addition to the ophen-centered pi-->pi* excited-state emission, 1 shows strong emissions at ambient temperature, which may be tentatively assigned as an admixture of copper-centered d-->s,p and MLCT excited states.  相似文献   

15.
We report new divalent osmium complexes that feature strong red metal-to-ligand-charge-transfer (MLCT) phosphorescence and electrophosphorescence. The general formula of the complexes is Os(II)(N-N)(2)L-L, where N-N is either a bipyridine or a phenanthroline and L-L is either a phosphine or an arsine. New polypyridyl ligands synthesized are 4,4'-di(biphenyl)-2,2'-bipyridine (15) and 4,4'-di(diphenyl ether)-2,2'-bipyridine (16), and the 1,10-phenanthroline derivatives synthesized are 4,7-bis(p-methoxyphenyl)-1,10-phenanthroline (17), 4,7-bis(p-bromophenyl)-1,10-phenanthroline (18), 4,7-bis(4'-phenoxybiphen-4-yl)-1,10-phenanthroline (19), and 4,7-bis(4-naphth-2-ylphenyl)-1,10-phenanthroline (20). 4,4'-Diphenyl-2,2'-bipyridine (21) and 4,7-diphenyl-1,10-phenanthroline (22) were also used in these studies. Strong pi-acid ligands used were 1,2-bis(diphenylarseno)ethane (23), cis-1,2-bis(diphenylphosphino)ethylene (24), and cis-1,2-vinylenebis(diphenylarsine) (25). Ligand 25 is used for the first time in these types of luminescent osmium complexes. These compounds feature strong MLCT absorption bands in the visible region and strong red phosphorescent emission ranging from 611 to 651 nm, with quantum efficiency up to 45% in ethanol solution at room temperature. Red organic light-emitting diodes (OLEDs) were successfully fabricated by doping the Os(II) complexes into blend of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD). Brightness over 1400 cd/m(2) for a double-layer device has been reached, with a turn-on voltage of 8 V. The maximum external quantum efficiency was 0.64%. Commission Internationale de l'Eclairage (CIE) chromaticity coordinates (x, y) of the red electrophosphorescence from the complexes are (0.65, 0.34), which indicates pure red emission.  相似文献   

16.
Trichlorostannyl complexes [M(SnCl3)(bpy)2P]BPh4 [M = Ru, P = P(OEt)(3), 1a PPh(OEt)2 1b; M = Os, P = P(OEt)3 2; bpy = 2,2'-bipyridine] were prepared by allowing chloro complexes [MCl(bpy)2P]BPh4 to react with SnCl2 in 1,2-dichloroethane. Bis(trichlorostannyl) compounds Ru(SnCl3)2(N-N)P2 [N-N = bpy, P = P(OEt)3 3a, PPh(OEt)2 3b; N-N = 1,10-phenanthroline (phen), P = P(OEt)3 4] were also prepared by reacting [RuCl(N-N)P3]BPh4 precursors with SnCl2.2H2O in ethanol. Treatment of both mono- 1a, 2 and bis 3a trichlorostannyl complexes with NaBH4 afforded mono- and bis(trihydridestannyl) derivatives [M(SnH3)(bpy)2P]BPh4 5, 6 and Ru(SnH3)2(bpy)P2 7[P = P(OEt)3], respectively. Treatment of 1a, 2 with MgBrMe gave the trimethylstannyl complexes [M(SnMe3)(bpy)2P]BPh4 8, 9 and treatment of 3a afforded the bis(stannyl) Ru(SnClMe2)2(bpy)P2 10 derivative. Alkynylstannyl complexes [M{Sn(C triple bond CR)3}(bpy)2P]BPh4 11-13 and Ru[Sn(C triple bond CR)3]2(N-N)P2 14-17(R = p-tolyl, Bu t; N-N = bpy, phen) were also prepared by allowing trichlorostannyl compounds 1-4 to react with Li+[RC triple bond C]* in thf. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of [Ru(SnMe3)(bpy)2{P(OEt)3}]BPh4 derivative.  相似文献   

17.
Absorption and emission spectra of Pt(diimine)L2 complexes (diimine = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy); L = pyrazolate (pz-), 3,5-dimethylpyrazolate (dmpz-), or 3,4,5-trimethylpyrazolate (tmpz-)) have been measured. Solvent-sensitive absorption bands (370-440 nm) are attributed to spin-allowed metal-to-ligand charge-transfer (1MLCT) transitions. As solids and in 77 K glassy solution, Pt(bpy)(pz)2 and Pt(dmbpy)(pz)2 exhibit highly structured emission systems (lambda max approximately 494 nm) similar to those of the diprotonated forms of these complexes. The highly structured bands (spacings 1000-1400 cm-1) indicate that the transition originates in a diimine-centered 3(pi-->pi*) (3LL) excited state. The intense solid-state and 77 K glassy solution emissions from 3MLCT[d(Pt)-->pi*(bpy)] excited states of complexes with dmpz- and tmpz- ligands occur at longer wavelengths (lambda max = 500-610 nm), with much broader vibronic structure. These findings are consistent with increasing electron donation of the pyrazolate ligands, leading to a distinct crossover from a lowest 3LL to a 3MLCT excited state.  相似文献   

18.
Luminescent cyclometalated rhodium(III) and iridium(III) complexes of the general formula [M(ppy) 2(N (wedge)N)][PF 6], with N (wedge)N = Hcmbpy = 4-carboxy-4'-methyl-2,2'-bipyridine and M = Rh ( 1), Ir ( 2) and N (wedge)N = H 2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine and M = Rh ( 3), Ir ( 4), were prepared in high yields and fully characterized. The X-ray molecular structure of the monocarboxylic iridium complex [Ir(ppy) 2(Hcmbpy)][PF 6] ( 2) was also determined. The photophysical properties of these compounds were studied and showed that the photoluminescence of rhodium complexes 1 and 3 and iridium complexes 2 and 4 originates from intraligand charge-transfer (ILCT) and metal-to-ligand charge-transfer/ligand-centered MLCT/LC excited states, respectively. For comparison purposes, the mono- and dicarboxylic acid ruthenium complexes [Ru(DIP) 2(Hcmbpy)][Cl] 2 ( 5) and [Ru(DIP) 2(H 2dcbpy)][Cl] 2 ( 6), where DIP = 4,7-diphenyl-1,10-phenanthroline, were also prepared, whose emission is MLCT in nature. Comparison of the photophysical behavior of these rhodium(III), iridium(III), and ruthenium(II) complexes reveals the influence of the carboxylic groups that affect in different ways the ILCT, MLCT, and LC states.  相似文献   

19.
Four luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes appended with an indole moiety [Ir(N∧C)2(N∧N)] (PF6) (HN∧C = 2-phenylpyridine, Hppy; N∧N = 2-(N-(2-(indole-3-acetamido)ethyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC2indole (1a), N∧N = 2-(N-(6-(indole-3-acetamido)hexyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC6indole (1b); HN∧C = 7,8-benzoquinoline, Hbzq, N∧N = dpqC2indole (2a), N∧N = dpqC6indole (2b)) have been synthesized and characterized. Upon irradiation, all the complexes displayed moderately intense and long-lived luminescence under ambient conditions and in 77 K glass. On the basis of the photophysical data, the emission of the complexes has been assigned to an excited state of triplet metal-to-ligand charge-transfer (3MLCT) ((dπ(Ir) → π*(N∧N)) character. Cyclic voltammetric studies revealed indole-based and iridium-based oxidations at ca. +1.10 V and +1.24 V vs. SCE, respectively, and ligand-based reductions at ca. ?1.07 to ?2.29 V vs. SCE. The interactions of the complexes with an indole-binding protein, bovine serum albumin (BSA), have been examined by emission titrations.  相似文献   

20.
The calculations of the electronic structure and spectra of [Ru(NH3)5L]2+ (L = imidazole, histidine) and [Ru(NH3)5L]3+ (L = imidazole, N-imidazolate anion, 4-methylimidazole, 4-methyl-1N-imidazolate anion and 1N-bound histidine) complexes are performed in the framework of the CI method in the INDO/CNDO approximation. The MO diagram is obtained. The assignment of all transitions with energies of 4-5 eV is made and the nature of corresponding excited states is discussed. For the Ru(II) complexes, the lower energy observable transition is assigned to d-->pi* type, whereas the higher energy one is assigned to pi-->pi* type. In the spectra of the Ru(III) complexes with charged ligands both transitions are of pi-->d character, while in the case of uncharged ligands, the higher energy transition mostly incorporates pi-->pi* excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号