共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei L Syomin D Loewe RS Lindsey JS Zaera F Bocian DF 《The journal of physical chemistry. B》2005,109(13):6323-6330
Structural and electron-transfer characteristics are reported for two classes of zinc porphyrin monolayers attached to Si(100) surfaces via Si-C bonds. One class, designated ZnP(CH(2))(n)- (n = 2-4), contains an alkyl linker appended to the meso-position of the porphyrin, with the nonlinking substituents being p-tolyl groups. The other, designated ZnPPh(CH(2))(n)- (n = 0-3), contains a phenyl or phenylalkyl linker appended to the meso-position of the porphyrin, with the nonlinking substituents being mesityl groups. Both classes of zinc porphyrin monolayers on Si(100) were examined using Fourier transform infrared spectroscopy and various electrochemical methods. The studies reveal the following: (1) The structural and electron-transfer characteristics of the ZnP(CH(2))(n)- and ZnPPh(CH(2))(n)- monolayers are generally similar to those of monolayers formed from porphyrins with analogous linkers, but anchored with an O, a S, or a Se atom. (2) The ZnP(CH(2))(n)-, ZnPPh-, and ZnPPhCH(2)- monolayers exhibit lower saturation coverages and have their porphyrin ring more tilted with respect to the surface normal than the ZnPPh(CH(2))(2)- and ZnPPh(CH(2))(3)- monolayers. (3) The electron-transfer rates for both the ZnP(CH(2))(n)- and ZnPPh(CH(2))(n)- classes of monolayers monotonically decrease as the length of the linker increases. (4) For all the ZnP(CH(2))(n)- and ZnPPh(CH(2))(n)- monolayers, both electron-transfer rates and charge-dissipation rates decrease monotonically as the surface coverage increases. Collectively, the studies reported herein provide a detailed picture of how the linker type influences the structural and electron-transfer characteristics of these general classes of monolayers. 相似文献
2.
The positron work-function, re-emission yield, and positronium fraction of an n-doped GaAs(100) surface were measured as a function of oxygen exposure. The energy distribution of positrons observed to be re-emitted indicated that the clean and oxygen exposed n-doped GaAs(100) surfaces had negative positron work-functions. The fraction of incident positrons re-emitted as bare positrons, (Y), was found to increase and the fraction re-emitted as positronium, (fPs), to decrease with increasing oxygen exposure. This suggests that surface modified GaAs may be useful as a contact material in the fabrication of GaAs based FAMs. 相似文献
3.
Yasseri AA Syomin D Loewe RS Laha JK Lindsey JS Zaera F Bocian DF 《Journal of the American Chemical Society》2004,126(47):15603-15612
Monolayers of two classes of Zn porphyrins have been prepared and examined on Si(100). These molecules, designated as ZnPBzX- and ZnPCH2X-, contain either a benzyl (-Bz-) or a methylene (-CH2-) unit terminated with a Group VI atom (X = O, S, Se) appended to a meso-position of the porphyrin, with the nonlinking meso-substituents consisting of either mesityl (-Bz- class) or p-tolyl and phenyl (-CH2- class) units. The two series of ZnPBzX- and ZnPCH2X- monolayers on Si(100) were examined using a variety of techniques, including X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and various electrochemical methods. The studies reveal the following characteristics of the ZnPBzX- and ZnPCH2X- monolayers. (1) Surface binding can be readily achieved to Si(100) with both relatively short (-Bz-) and very short (-CH2-) tethers regardless of the nature of the Group VI anchoring atom (O, S, Se). (2) The longer -Bz- tether affords monolayers with the porphyrin ring in a somewhat more upright orientation with respect to the surface than the shorter -CH2- tether. The more upright adsorption geometry of the porphyrins bearing the former type of linker leads to a higher packing density and more homogeneous redox thermodynamics. (3) The kinetics of electron transfer does not depend on the type of Group VI atom used for anchoring to the Si(100) surface. On the other hand, the type of linker does affect the electron-transfer rates, with the monolayers bearing the -CH2- linker exhibiting systematically faster rates than those bearing the -Bz- linker. Collectively, the studies reported herein provide a detailed picture of how the anchor atom and the linker type influence the structural and electron-transfer characteristics of these general classes of monolayers. 相似文献
4.
N-type Si(1 0 0) surfaces were modified by reduction of 4-nitrobenzenediazonium through cyclic voltammetry. Contact mode AFM was employed to produce holes in the deposited layers and cross-sectional profiles were obtained to determine their thicknesses. Layer thickness was found to increase with the number of cyclic potential scans in both aqueous and non-aqueous media. In acetonitrile, the single scan thickness was determined to be approximately 15 nm, whereas for three scans the layer thickness was found to be approximately 35 nm. These thicknesses were also measured and confirmed by ellipsometry. Both thicknesses are indicative of multilayer formation on the silicon surface. Layers formed in acetonitrile were more uniform and of better quality (without holes), compared to those prepared in water. This type of functionalized surface, after further cyclic voltammetric reduction of the nitro groups and treatment with glutaraldehyde, was then used to immobilize single strand DNA-C6H12NH2 probe sequences for hybridization with complementary DNA sequences. Fluorescein-labeled probe and target oligonucleotide sequences were used to validate the immobilization of the probe layer and hybridization with the complementary sequence. No binding was observed when using a non-complementary sequence as probe. 相似文献
5.
Fréchette J Maboudian R Carraro C 《Langmuir : the ACS journal of surfaces and colloids》2006,22(6):2726-2730
The thermal stability of perfluoralkylsiloxane monolayers in a vacuum is investigated via X-ray photoelectron spectroscopy (XPS) for temperatures up to 600 degrees C. 1H,1H,2H,2H,-perfluorodecyltrichlorosilane (FDTS) monolayers are deposited on oxidized Si(100) surfaces from the vapor phase with various degrees of surface coverage. Significant monolayer desorption is observed to occur at temperatures below 300 degrees C regardless of the initial monolayer coverage. The desorption mechanism follows first-order kinetics and is independent of the initial coverage. Removal of FDTS is found to occur by the loss of the entire molecular chain, as evidenced by the fact that the CF(3)/CF(2) peak area ratios remain unaffected by the annealing process although CF(n)()/Si peak ratio declines with annealing. This is in sharp contrast to the behavior observed for octadecyltrichlorosilane monolayer for which elevated temperature leads to C-C bond breakage and successive shortening of the alkyl chain. It is also shown that the binding energy and the shape of the F 1s line are good indicators of the degree of disorder in the chain, as well as a measure of the interaction of the chain with the silicon surface. 相似文献
6.
We have investigated the reaction pathways involved in the unseeded electroless deposition of copper on self-assembled monolayers (SAMs) adsorbed on Au, using time-of-flight secondary ion mass spectrometry, optical microscopy, and scanning electron microscopy. At 22 degrees C copper deposits on both -CH3 and -COOH terminated SAMs. No copper deposition is observed on -OH terminated SAMs because the hydroxyl terminal groups react with formaldehyde in the plating solution, forming an acetal which prevents Cu deposition. At higher deposition temperatures (45 degrees C), no Cu is observed to deposit on -CH3 terminated SAMs because Cu2+ ions are not stabilized on the SAM surface. Copper complexes are still able to form with the -COOH terminal group at 45 degrees C, and so copper continues to be deposited on -COOH terminated SAMs. Copper also penetrates through -CH3 and -COOH terminated SAMs to the Au/S interface, suggesting that soft deposition techniques do not prevent the penetration of low-to-moderate reactivity metals through organic films. 相似文献
7.
Ciampi S James M Michaels P Gooding JJ 《Langmuir : the ACS journal of surfaces and colloids》2011,27(11):6940-6949
We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces. 相似文献
8.
Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach
Ciampi S Böcking T Kilian KA James M Harper JB Gooding JJ 《Langmuir : the ACS journal of surfaces and colloids》2007,23(18):9320-9329
In this article, we report the functionalization of alkyne-terminated alkyl monolayers on Si(100) using "click" chemistry, specifically, the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides with surface-bound alkynes. Covalently immobilized, structurally well-defined acetylene-terminated organic monolayers were prepared from a commercially available terminal diyne species using a one-step hydrosilylation procedure. Subsequent derivatization of the alkyne-terminated monolayers in aqueous environments with representative azide species via a selective, reliable, robust cycloaddition process afforded disubstituted surface-bound [1,2,3]-triazole species. Neither activation procedures nor protection/deprotection steps were required, as is the case with more established grafting approaches for silicon surfaces. Detailed characterization using X-ray photoelectron spectroscopy and X-ray reflectometry demonstrated that the surface acetylenes had reacted in moderate to high yield to give surfaces exposing alkyl chains, oligoether anti-fouling moieties, and functionalized aromatic structures. These results demonstrate that click immobilization offers a versatile, experimentally simple, chemically unambiguous modular approach to producing modified silicon surfaces with organic functionality for applications as diverse as biosensors and molecular electronics. 相似文献
9.
Palomaki PK Krawicz A Dinolfo PH 《Langmuir : the ACS journal of surfaces and colloids》2011,27(8):4613-4622
We report the structure, optical properties and surface morphology of Si(100) supported molecular multilayers resulting from a layer-by-layer (LbL) fabrication method utilizing copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), also known as "click" chemistry. Molecular based multilayer films comprised of 5,10,15,20-tetra(4-ethynylphenyl)porphyrinzinc(II) (1) and either 1,3,5-tris(azidomethyl)benzene (2) or 4,4'-diazido-2,2'-stilbenedisulfonic acid disodium salt (3) as a linker layer, displayed linear growth properties up to 19 bilayers. With a high degree of linearity, specular X-ray reflectivity (XRR) measurements yield an average thickness of 1.87 nm/bilayer for multilayers of 1 and 2 and 2.41 nm/bilayer for multilayers of 1 and 3. Surface roughnesses as determined by XRR data fitting were found to increase with the number of layers and generally were around 12% of the film thickness. Tapping mode AFM measurements confirm the continuous nature of the thin films with roughness values slightly larger than those determined from XRR. Spectroscopic ellipsometry measurements utilizing a Cauchy model mirror the XRR data for multilayer growth but with a slightly higher thickness per bilayer. Modeling of the ellipsometric data over the full visible region using an oscillator model produces an absorption profile closely resembling that of a multilayer grown on silica glass. Comparing intramolecular distances from DFT modeling with experimental film thicknesses, the average molecular growth angles were estimated between 40° and 70° with respect to the substrate surface depending on the bonding configuration. 相似文献
10.
Tricard S Costa-Coquelard C Mazerat S Rivière E Huc V David C Miserque F Jegou P Palacin S Mallah T 《Dalton transactions (Cambridge, England : 2003)》2012,41(15):4445-4450
Sequential growth in solution (SGS) was performed for the magnetic cyanide-bridged network obtained from the reaction of Ni(H(2)O)(2+) and Cr(CN)(6)(3-) (referred to as NiCr) on a Si(100) wafer already functionalized by a Ni(II) complex. The growth process led to isolated dots and a low coverage of the surface. We used the NiFe network as a template to improve the growth of the magnetic network. We elaborated alternate NiFe (paramagnetic)-NiCr (ferromagnetic) ultrathin films around 6 nm thick. The magnetic behaviour confirmed the alternate structure with the ferromagnetic zones isolated between the paramagnetic ones since the evolution of the blocking temperature is consistent with the evolution of the layers' thickness expected from the SGS process. 相似文献
11.
Lee MV Guo D Linford MR Zuilhof H 《Langmuir : the ACS journal of surfaces and colloids》2004,20(21):9108-9113
Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 x 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal due to functionalization. Random addition of ethylene and acetylene was used to determine how the addition of an adduct molecule affects subsequent additions for coverages up to one molecule per silicon dimer, that is, 100% coverage. Randomization subdues the effect that the relative positions of the adsorbates have on the enthalpy of the system. For ethylene and acetylene, the enthalpy of reaction changes less than 3 and 5 kcal/mol, respectively, from the first reacted species up to 100% coverage. As a result, a (near-)complete coverage is predicted, which is in line with experimental data. When 1-alkenes and 1-alkynes add by [2 + 2] addition, the hydrocarbon chains interact differently depending on the direction they project from the surface. These effects were investigated for four-carbon chains: 1-butene and 1-butyne. As expected, the chains that would otherwise intersect bend to avoid each other, raising the enthalpy of the system. For alkyl chains longer than four carbons, the chains are able to reorient themselves in a favorable manner, thus, resulting in a steady reduction in reaction enthalpy of about 2 kcal/mol for each additional methylene unit. 相似文献
12.
13.
We have investigated the seedless electroless deposition (ELD) of Ni on functionalized self-assembled monolayers (SAMs) using scanning electron and optical microscopies, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. For all SAMs studied, the Ni deposition rate is dependent on the bath pH, deposition temperature, and complexing agent. In contrast to the physical vapor deposition of Ni on SAMs, electrolessly deposited Ni does not penetrate through the SAM. This behavior indicates that ELD is a suitable technique for the deposition of low-to-moderate reactivity on organic thin films. We demonstrate that Ni can be selectively deposited on SAMs using two different methods. First, selectivity can be imparted by the formation of Ni(II)-surface complexes. As a demonstration, we selectively deposited Ni on the -COOH terminated SAM areas of patterned -COOH/-CH(3) or -COOH/-OH terminated SAMs. Here, Ni(2+) ions form Ni(2+)-carboxylate complexes with the -COOH terminal group, which comprise the nucleation sites for subsequent metal deposition. Second, we demonstrate that nickel is selectively deposited on the -CH(3) terminated SAM areas of a patterned -OH/-CH(3) terminated SAM. In this case, the Ni(2+) ion does not specifically interact with the -CH(3) terminal group. Rather, selectivity is imparted by the interaction of the reductant, dimethylamine borane (DMAB), with the -OH and -CH(3) terminal groups. 相似文献
14.
The electronically excited states of the Si(100) surface and acetylene, benzene, and 9,10-phenanthrenequinone adsorbed on Si(100) are studied with time-dependent density functional theory. The computational cost of these calculations can be reduced through truncation of the single excitation space. This allows larger cluster models of the surface in conjunction with large adsorbates to be studied. On clean Si(100), the low-lying excitations correspond to transitions between the pi orbitals of the silicon-silicon dimers. These excitations are predicted to occur in the range 0.4-2 eV. When organic molecules are adsorbed on the surface, surface --> molecule, molecule --> surface, and electronic excitations localized within the adsorbate are also observed at higher energies. For acetylene and benzene, the remaining pipi* excitations are found to lie at lower energies than in the corresponding gas-phase species. Even though the aromaticity of 9,10-phenanthrenequinone is retained, significant shifts in the pipi* excitations of the aromatic rings are predicted. This is in part due to structural changes that occur upon adsorption. 相似文献
15.
The purpose of our research is to study the reactions, interactions or penetration between vacuum-deposited metals (M) and the organic functional end groups (OFGs) of self-assembled monolayers (SAMs) under controlled conditions. Metal/SAM systems are models for understanding bonding at M/organic interfaces and the concomitant adhesion between the different materials. In broad terms, the M/OFGs form interacting interfaces (e.g., Cr/COOH or Cu/COOH) in which the deposit resides on top of the OFGs or weakly interacting interfaces through which the overlayer penetrates and resides at the SAM/gold interface. We present a review of XPS results from weakly interacting systems (e.g., Cu/OH, Cu/CN, Ag/CH3, Ag/COOH) and discuss in more depth the time-temperature dependence of the disappearance of the metal from the M/SAM interface following deposition. In this work, XPS and ISS were used to characterize octadecanethiol (ODT, HS(CH2)17CH3), mercaptoundecanoic acid (MUA, HS(CH2)10COOH), and mercaptohexadecanoic acid (MHA, HS(CH2)15COOH) SAMs before and after depositing up to 1.0 nm Ag or Cu at ca. 10−7 torr. The SAMs were prepared by self-assembly onto gold films on <100> silicon substrates in an ethanolic thiol solution. XPS spectra indicate that no strong interaction occurs between the deposited Ag and the COOH organic functional group (OFG) of MUA or MHA, although a stronger interaction is evident for MHA, and a unidentate is formed for Cu on mercaptoundecanol (MUO). The Ag interaction with ODT is weak. ISS compositional depth profiles (CDPs) for Ag on MHA and MUA and ODT are compared over a temperature range of 113 to 293 K. The ISS results indicate that Ag remains on the surface of MUA for up to 1 h after deposition, whereas Ag penetrates ODT in less than 5 min at 295 K. The time for Ag to penetrate into MHA is several times longer than for MUA, depending on the SAM temperature. The time dependence of the slower Ag penetration through MUA and MHA is compared with that for ODT at temperatures below 295 K. Although Ag/OFGs are expected to have relatively weak interactions, the Ag/COOH system was anticipated to be more interactive than was found, so rapid penetration of Ag through the COOH SAM is an unexpected result. 相似文献
16.
Di Bella S Condorelli GG Motta A Ustione A Cricenti A 《Langmuir : the ACS journal of surfaces and colloids》2006,22(19):7952-7955
The synthesis and structure of a dipolar nonlinear optical bis(salicylaldiminato)Ni(II)-derivatized Schiff base complex chemisorbed on H-terminated Si(100) surfaces is reported. The existence of a monolayer of the derivatized complex chemisorbed on the Si(100) surface is unambiguously confirmed by high-resolution core-level XPS and AFM/SNOM analyses. The comparison between the optical SNOM images highlights the contribution of the monolayer to the local reflectivity of the sample. Angle-resolved XPS data indicate the presence of chlorine head atoms on the monolayer surface. Altogether, XPS and AFM/SNOM data suggest the formation of a nanoscale uniform, homogeneous, complete, ordered monolayer self-assembled on the Si(100) surface. 相似文献
17.
S. N. Novikov S. P. Timoshenkov V. S. Minaev E. P. Goryunova N. N. Gerasimenko D. I. Smirnov 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2016,90(9):1869-1874
Si(100) samples cut from a typical bar (100 mm in diameter) prepared using industrial technology are studied. Measurements of the electron work function (EWF) show that the size effects in these samples (a reduction in thickness along with a sample’s area and the EWF) detected earlier were due to nanostructure porosity that was buried by the technological treatment of a bar’s surface. This hidden nanoporosity is assumed to be a manifestation of the secondary crystal structure. 相似文献
18.
Thin polymer films were deposited on Si(100) surfaces by plasma polymerization of glycidyl methacrylate (GMA) under different glow discharge conditions. The FT‐IR, X‐ray photoelectron spectroscopy (XPS), and amine treatment results suggested that the epoxide functional groups of the deposited films had been preserved to various extents, depending on the plasma deposition conditions. The use of a low radio frequency power (~ 5 W) and a relatively high system pressure (100–400 Pa) readily resulted in the deposition of thin films having nearly the same composition of the epoxide functional groups as that of the GMA homopolymer. The plasma‐polymerized GMA (PP‐GMA) thin films deposited on the Ar plasma‐pretreated Si(100) surfaces were retained to a large extent after acetone extraction, suggesting the presence of covalent bonding between the PP‐GMA layer and the Si surface. Thermal imidization of the poly(amic acid) precursor of polyimide on the GMA plasma‐polymerized Si(100) surface resulted in a strongly adhered polyimide film. The adhesion results further suggested that the GMA polymer had been grafted on the Si(100) surface and the epoxide functional groups had undergone reactive interaction (curing) with the carboxylic and amine groups of the poly(amic acid) during thermal imidization. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
19.
Metal overlayers deposited in vacuum onto self-assembled monolayer (SAM) systems serve as models for more complex metalized polymers. Metals (M) deposited onto SAMs with different organic functional end groups exhibit a wide range of behavior, ranging from strong chemical interactions with the end group to complete penetration of the metal through the SAM. In this work, we have characterized the interactions of Cu with the ---COOH of mercaptohexadecanoic acid (MHA, HOOC(CH2)15SH) SAMs self assembled on gold films by using X-ray photoelectron spectroscopy (XPS) to examine the chemical interactions, and a combination of XPS and ion scattering spectroscopy (ISS) to deduce the growth mode and penetration rate of the deposited Cu. We found that submonolayer amounts of Cu react with HOOC, whereas the rest of the Cu remains metallic and penetrates beneath the SAM surface to the SAM Au interface. Considerable amounts of Cu (5 nm or more) will penetrate beneath the SAM layer, which is ca. 2.5 nm thick, despite the submonolayer presence of Cu at the SAM surface. The penetration rate depends strongly on the Cu deposition rate. Depositing copper onto MHA at 220 K or less, or using faster Cu deposition rates, results in slower or even completely suppressed penetration of the Cu through the SAM layer, whereas exposure to X-rays greatly enhances the penetration rate of large amounts of Cu through the SAM layer. The reacted copper is, based on the XPS 2p and LMM peaks, in the +2 oxidation state, but cannot be identified with a simple, stoichiometric oxide such as Cu2O, CuO, or Cu (OH)2. 相似文献
20.
Nano-structured CuS thin films were deposited on the functionalized -NH(2)-terminated self-assembled monolayers (SAMs) surface by chemical bath deposition (CBD). The deposition mechanism of CuS on the -NH(2)-terminated group was systematically investigated using field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscope (XPS), UV-vis absorption. The optical, electrical and photoelectrochemical performance of CuS thin films incorporating with the X-ray diffraction (XRD) analysis confirmed the nanocrystalline nature of CuS with hexagonal crystal structure and also revealed that CuS thin film is a p-type semiconductor with high electrical conductivity (12.3Ω/□). The functionalized SAMs terminal group plays a key role in the deposition of CuS thin films. The growth of CuS on the varying SAMs surface shows different deposition mechanisms. On -NH(2)-terminated surfaces, a combination of ion-by-ion growth and cluster-by-cluster deposition can interpret the observed behavior. On -OH- and -CH(3)-terminated surfaces, the dominant growth mechanism on the surface is cluster-by-cluster deposition in the solution. According to this principle, the patterned CuS microarrays with different feature sizes were successfully deposited on -NH(2)-terminated SAMs regions of -NH(2)/-CH(3) patterned SAMs surface. 相似文献