首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究傅里叶变换光谱超分辨率的一种新方法   总被引:5,自引:1,他引:4  
相里斌  赵葆常 《光学学报》1995,15(11):529-1533
应用傅里叶退卷积、自回归模型与截断奇异值分解相结合的方法,获得了比采用常规变换方法高得多的光谱分辨率。与研究光谱超分辨率的其它方法相比,用FAT方法进行了光谱超分辨率估计,有分辨率高,谱线细锐、钪噪声能力强和无伪峰等许多优点。  相似文献   

2.
用计算机模拟方法讨论了在谱线重叠的条件下,谱线强度因二维傅里叶变换而引起严重失真的问题,并结合例子详细研究了未被人们注意的一些情况。  相似文献   

3.
傅里叶红外光谱法直接测定丙二醇含量   总被引:1,自引:0,他引:1  
研究了傅里叶变换红外光谱(FTIR)直接测定丙二醇水溶液中丙二醇含量的方法。结果表明,样品无须做前处理,丙二醇的含量与其红外吸收峰强度在实验浓度范围内皆有良好的线性关系,回收率为100.0%-101.4%,相对标准偏差为0.146%,该方法简单、快速,测定结果令人满意。  相似文献   

4.
相位恢复工作中,针对物函数是实函数的情形,Fienup算法取得了较大的成功.本文给出一新算法,其收敛程度比Fienup算法更优.以天文学中双星情形为例,比较了两种不同算法的结果.  相似文献   

5.
戴闻 《物理》2003,32(7):494-494
单晶固体的电子结构可以通过两种等效的途径加以描述 ,即实空间的局域量子态和动量空间的波态 .然而 ,对于铜氧化物超导体 ,由于存在纳米尺度的晶格不完善 ,上述两种手段的任何一种都不足以单独描述它的电子行为 .最近 ,来自美国加州大学的McElroyK等对Bi- 2 2 12超导体进行了傅里叶变换扫描隧道谱的研究 (见Nature ,2 0 0 3,4 2 2 :5 92 ) ,结果表明 ,费米面形貌以及能隙分布与角分辨光发射谱实验的结果相符 ,这次研究还有许多新结果 :未占据态的动量空间结构得到了确认 ,从而展示了高温超导体的传统一面———粒子与空穴共存 ;在能隙最…  相似文献   

6.
在静态干涉系统中,采用电光调制可变折射率晶体LiNbO3做静态傅里叶干涉具的材料,两侧分别加载相位相反的调制信号,从而在不改变静态傅里叶干涉具尺寸的条件下提高光谱分辨率。通过推导光程差函数与折射率调制度的函数关系,计算得在折射率调制度为0.030的条件下,比同尺寸干涉具光谱分辨率提高了16.7倍,达到2.836 cm-1。仿真结果表明折射率调制度会因波长增大而减小,光程差函数会随干涉位置的增大而产生偏大的现象。实际探测过程中,由于光谱范围500~1 100 nm相对较窄,波长变化造成的光谱探测失真不大,可以通过标定补偿,所以应用该方法可以有效地提高静态干涉系统的光谱分辨率。  相似文献   

7.
基于离轴无透镜傅里叶变换数字全息的原理,分析了影响离轴无透镜傅里叶变换数字全息分辨率的两个重要因素,一是物的大小和记录距离,二是参考点光源的大小.指出在满足三像分离与采样定理的条件下,恰当选择成像区域、记录距离和参考点光源尺度,可提高成像分辨率.在此基础上分别使用线度为2μm、6.5μm和15μm的参考点光源,对USAF1951分辨率板中心的1.0×1.0mm2和1.5×1.5mm2的成像区域,在不同记录距离进行了相应的实验,获得了与理论分析相符的结果,证明了理论分析的正确性.  相似文献   

8.
为了在不改变静态傅里叶变换干涉具尺寸的前提下提高光谱分辨率,设计了正交斜楔型静态傅里叶变换干涉具,采用两个正交的等效斜楔形成连续的光程差变化.通过推导传统干涉具与正交斜楔型干涉具的光程差函数,设计了采用正交斜楔型干涉具增加有效探测长度,从而提高光谱分辨率的方法.经仿真计算,正交斜楔型干涉具的最大光程差为0.323 4 mm,比传统干涉具的0.080 8 mm大4倍左右,即光谱分辨率提高了4倍.实验证明,由于正交斜楔的探测原理使干涉具边缘的干涉条纹产生畸变,故要对干涉条纹进行边缘切除及滤波,给出了切除大小的计算公式.采用WQF520型光谱仪进行对比实验,检测800 nm的激光,该干涉具误差小于1 nm.该方法可有效地提高静态傅里叶变换干涉具的光谱分辨率.  相似文献   

9.
刘铁根  李月华  白晓 《光学技术》2000,26(6):489-493
分辨率是反映感光材料性能的一项重要指标。利用符合国家标准 GB- 90 45 88的 PI- A和 PI- B型感光材料分辨率测定仪 ,实验研究感光材料的极限分辨率 ,找出影响因素 ,提出解决办法。实验结果表明 ,有下列几种因素影响分辨率的测定精度 :照明光源的色温和相干性 ;成像系统的数值孔径和调焦状态 ;底片曝光量 ;标板图案的形式和反差 ;底片的冲洗和显影条件等。指出 ,用极限分辨率法测定感光材料的分辨率 ,由于中间环节少 ,可以克服许多不利因素 ,在 PI-B测定仪上可测得分辨率超过 10 0 0线 /mm的感光材料。  相似文献   

10.
为了在稀疏发射阵列下清晰重构目标图像,提出了一种基于空域非均匀傅里叶变换(NDFT)的傅里叶望远镜信号处理方法。依据傅里叶望远镜的发射器位置与抽取的目标空间频率关系,结合MATLAB程序特点,完成了空域非均匀傅里叶逆变换,重构了目标图像。稀疏发射阵列配置方式为:T型阵列单臂放置11个发射望远镜,连续抽取目标的8个低频信息,再抽取3个高频分量。选择不同形状和灰度分布的4个卫星作为成像目标。与补零均匀快速傅里叶变换(FFT)方法重构的图像对比发现:信噪比为100 dB时,相比补零均匀FFT方法, NDFT方法重构图像的Strehl比都有所提升,最高提升了0.159 8。  相似文献   

11.
高光谱分辨率横向剪切静态干涉光谱仪   总被引:9,自引:7,他引:2  
苏丽娟  相里斌  袁艳 《光子学报》2006,35(5):684-687
提出一种基于新型的分光方法的横向剪切分束器,分析了该分束器结构的分光原理,并对其用于干涉光谱仪中的效果进行了分析计算.该分束器同体积条件下较目前的分束器可以产生十倍以上的剪切量,应用到干涉仪中可以在获得高光谱分辨率的同时不增大仪器的体积和重量.同时,该分束器分光时,无光能返回光源,较Sagnac型分束器对光能的利用率提高了近一倍;相对变形Mach-Zehnder型结构易实现实体化.  相似文献   

12.
肖焱山  曹益平  武迎春  李洋 《光学学报》2012,32(12):1212004
数字投影和成像系统的Gamma非线性效应是导致相位测量轮廓术(PMP)测量误差的重要原因。目前大多采用多帧条纹图进行Gamma校正,使测量的实时性受到限制。提出了一种Gamma校正方法,利用正交光栅像的傅里叶频谱分布计算Gamma值,再根据此Gamma值对投影相移条纹进行Gamma逆变换,实现投影条纹输入值的提前校正,以获取具有良好正弦性的结构条纹,从而降低PMP相位测量误差。校正过程中只需一帧条纹图,而且考虑了测量系统的离焦效应。实验证实了该方法的有效性和正确性。  相似文献   

13.
实验室中傅里叶望远术频谱抽取方式   总被引:6,自引:1,他引:5       下载免费PDF全文
傅里叶望远术是一种主动式的高分辨率成像技术,它使用激光发射阵列产生的干涉条纹场去照射目标,然后用探测器接收回波信号,再对回波信号作相应处理重构出目标图像.在实验室验证实验中,抽取目标频谱的干涉条纹不是由发射阵列产生的,而是通过改变光束位置的方式获得.对直线干涉条纹抽取目标频谱的原理进行了论述,并提出了一种新的光束移动方...  相似文献   

14.
A method to synthesize a computer-generated hologram (CGH) of real-existing objects from projection images is proposed. Different from other similar methods, our method enables the synthesis of a CGH with only one-dimensional (1-D) mechanical scanning of the objects. Our method is connected with the three-dimensional (3-D) Fourier spectrum of the objects by the 3-D central slice theorem (CST). Two efficient recording techniques for projection images and numerical experiments to verify our principle is discussed. A comparison between the two techniques is also presented from the viewpoint of diffraction efficiency. © 2005 The Optical Society of Japan  相似文献   

15.
以废弃核桃壳为载体材料、癸酸为相变材料,采用微波加热法制备癸酸/多孔活性炭功能材料。采用傅里叶红外光谱仪对癸酸/多孔活性炭功能材料制备过程各阶段的合成物质进行测试,即活性炭前驱体制备阶段、多孔活性炭制备阶段和癸酸/多孔活性炭功能材料制备阶段。研究癸酸/多孔活性炭功能材料制备过程中多孔活性炭复杂网络结构形成机理、癸酸嵌入方式、癸酸与多孔活性炭的嵌合机理,阐明微波加热法制备癸酸/多孔活性炭功能材料的相关机理。同时采用动态水分吸附分析仪、差示扫描量热仪和环境测试舱对癸酸/多孔活性炭功能材料的湿性能、热性能和吸附性能进行测试。结果表明:癸酸/多孔活性炭功能材料具有发达的孔结构和复杂的网络结构,其中部分孔隙吸附癸酸,部分孔隙吸附甲醛分子,孔隙表面具有亲水性的官能团吸附水分子。癸酸/多孔活性炭功能材料具有较好的湿性能、热性能和吸附性能,其在相对湿度40%~60%,平衡含湿量为0.063 1~0.257 0 g·g-1;相变温度为27.42~33.96 ℃,相变焓为52.14~52.67 J·g-1;经过4 h对甲醛气体的吸附效率为50.57%。  相似文献   

16.
半导体激光器的线宽通常采用激光外差测量技术,通过差拍信号的功率谱密度函数来确定,受傅里叶变换方法的限制,得到的均是在一定时间段内的静态平均线宽。为了获得半导体激光器在电流调谐过程中的瞬时线宽特性,提出了利用时变功率谱获知调谐瞬时线宽的相干和非相干测量方法,并分别进行了理论分析和实验验证。首先对半导体激光器输出光信号及差拍信号进行了时间-频率域下的数学描述,确定了时变功率谱与调谐瞬时线宽的关系;其次,针对差拍信号的趋向性特征,提出了趋势局部均值分解方法,并研究了利用分解出的乘积函数建立差拍信号及激光器输出光信号的时变功率谱的方法;最后利用非相干和相干测量法分别获得了分布反馈式半导体激光器在50~51及50~100 mA锯齿波电流调谐过程中的瞬时线宽。  相似文献   

17.
本文指出了传统的光栅分辨本领R=kN只是在光源狭缝无限细的情况下的极限值。当光源狭缝还有一定宽度W时,衍射条纹将增宽,相应最小分辨角Δθk将增大,实际光栅系统的分辨本领将减小。文章运用衍射理论,给出了实际光栅系统分辨本领的修正公式。在实验中,在不同光栅宽度D的情况下,用k=1级衍射条纹,当测量恰能分辨钠黄光的双线结构的光源缝宽W时,这时光栅系统的分辨本领是λ/δλ≈1000,与修正公式计算的理论值一致。  相似文献   

18.
胡绪洲  杨爱明 《光学学报》1998,18(8):064-1067
给出海洛因和鸦片的傅里叶红外吸收实测谱。根据吸收峰的位置,计算出海洛因的基本声子能量:ELO=0.0486eV,ETO1=0.0555eV,ETO2=0.0616eV,ELA=0.0257eV,ETA1=0.0097eV,ETA2=0.0134eV。这些声子按照不同的组合方式,形成海洛因的全部傅里叶红外吸收峰。  相似文献   

19.
凹面衍射光栅兼具色散分光与光束聚焦功能,同时具有像差校正、低杂散光、无鬼线和高信噪比等优势而受到光谱仪器领域的广泛关注。衍射效率作为凹面光栅最重要的技术指标之一,其测量技术水平逐渐成为光谱仪器行业最为关注的课题之一。传统方法一般采用双单色仪结构实现凹面光栅衍射效率的测量,该方法主要存在两方面问题,一是测量标准反射镜和待测光栅的出射光谱带宽不同,二是光栅叠级、杂散光的影响;上述问题的存在降低了高性能凹面光栅衍射效率测量的准确性。本文提出了一种基于傅里叶光学原理测量凹面光栅衍射效率的新方法;针对该方法建立了凹面光栅衍射效率测量的数学模型,并采用光学追迹和傅里叶光学方法相结合对其进行了仿真分析,从而验证了该方法的正确性;针对动镜横移误差、倾斜误差、光源稳定性、动镜运动距离误差等因素影响凹面光栅衍射效率测量精度的问题,提出引入辅助探测器的方法来进一步提高衍射效率测量精度,并对有无辅助探测器情况下的上述误差对衍射效率的影响进行了数学推导和仿真分析,分析结果表明引入辅助探测器可以有效抑制了上述误差对凹面光栅衍射效率测量的影响。对比传统双单色仪测量方法而言,该方法不仅能够解决传统测量方法存在的问题,同时还具有多波长同时测量、高光通量、高分辨率、高波数精度等优势,可以有效提高凹面光栅衍射效率的测量精度和测量效率。  相似文献   

20.
荧光寿命的快速傅里叶变换拟合方法   总被引:5,自引:2,他引:5  
介绍了一种利用快速傅里叶变换算法对稀土掺杂物质的荧光寿命进行数据拟合的方法。稀土掺杂物质可用来制备多种光学传感器,用于温度、pH值等多种参量测量领域。本方法利用快速傅里叶变换(FFT)结果作为基础,从非零项的相位角的正切值得出被测的荧光寿命,具有速度快、误差小、不受本底干扰等一系列优点。以掺铒光纤为例,通过数字仿真将本方法与其它几种传统的拟合方法进行了比较。快速傅里叶变换方法的测量偏差不到Prony方法的50%,为对数似合(log-fit)方法测量偏差的1/6。另外,快速傅里叶变换方法由于不受本底噪声影响,可以不必在信号处理时去掉本底噪声,因而可以明显缩短测量时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号