首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
关寿华  于清旭 《应用光学》2013,34(3):537-541
利用有限差分法和耦合模理论分析了光子晶体光纤结构参数等因素对光栅周期调节长周期光栅谐振波长作用的影响,结果表明:对于同种光纤,可通过增大或减小光栅周期来减小或增大谐振波长;若占空比f增大或减小,可通过减小或增大光栅周期来保持谐振波长不变;若比例系数M增大或减小,可以成正比增大或减小光栅周期来保持谐振波长不变;在只是空气孔层数增加的系列光纤中,在长波处,为取得同一谐振波长,光栅周期需要增大数个m,但在短波处则正好相反;内层气孔对光栅周期调节谐振波长的作用影响较大,而第5层以外各层的影响十分微弱。综合利用这些规律,可以快捷地选择合适的光栅周期,高效率地制备有合适谐振波长的光子晶体光纤长周期光栅。  相似文献   

2.
长周期光纤光栅谐振波长与曝光量的变化关系   总被引:6,自引:0,他引:6       下载免费PDF全文
利用波动干涉理论推导了长周期光纤光栅的光栅方程. 利用色心模型和Kramers-Kronig原理,得到了长周期光纤光栅的中心谐振波长与曝光量的变化关系的理论公式,并进行了实验研 究. 理论和实验结果都表明,长周期光纤光栅的中心谐振波长与曝光量的关系按多项e负指 数之和规律变化,其变化率受到模板占空比的控制;另外,长周期光纤光栅的中心谐振波长 与模板占空比成反比关系. 关键词: 长周期光纤光栅 谐振波长 模板占空比  相似文献   

3.
长周期光纤光栅谐振波长的横向负载特性分析   总被引:3,自引:0,他引:3  
在考虑波导效应、弹光效应等因素后,详细地理论分析了长周期光纤光栅(LPFG)的横向负载传感特性,包括谐振波长漂移及谐振峰分化后的双峰间距与横向负载、光偏振的关系,模拟计算了单模光纤长周期光栅的横向负载传感特性.理论分析和计算结果表明,长周期光纤光栅谐振波长随横向负载的漂移量和方向与光源的偏振方向有关,加载方向偏振光的谐...  相似文献   

4.
理论上详细分析了长周期光纤光栅谐振波长随外界环境折射率变化而变化的光谱特性,分析结果可较好地解释镀有LB膜(Langmuir-Blodgett thin-film)的长周期光纤光栅的谐振波长与膜厚之间的关系。分析研究表明.通过减小纤芯直径和改变芯与包层折射率差等方法可调整光纤光栅的谐振波长,使其从一般光纤光栅谐振波长所处的近红外区转到可见光区,以利于光纤光栅配套仪器系统的调试并使系统成本降低,从而为长周期光纤光栅传感技术的发展和应用奠定基础。  相似文献   

5.
光纤参数对长周期光纤光栅谐振波长的影响   总被引:1,自引:0,他引:1  
从光栅周期、折射率调制深度、包层半径和芯层半径对长周期光纤光栅的谐振波长的影响进行了研究。这些结果对于选择合适的光纤合理设计光栅周期以增加其敏感性具有一定的意义。  相似文献   

6.
徐艳平  顾铮 《光学技术》2006,32(2):177-179
通过求解严格的耦合模理论建立的三包层结构长周期光纤光栅特征方程,研究了三包层长周期光纤光栅谐振波长与第二包层(薄膜)的折射率和厚度之间的关系。结果发现,随着膜厚及折射率的增大,谐振波长偏移的变化分成三个区域,这与Nicholas D R的实验结果相符。利用HE/EH模的判据数,对三个区域的模特性进行了分析,给出了区域划分的衡量标准。给出了在不同薄膜参数时的长周期光纤光栅透射谱,发现一阶低次HE模式的耦合强度要远大于一阶低次EH模式。  相似文献   

7.
长周期光纤光栅的折射率敏感特性   总被引:1,自引:0,他引:1  
利用光波导的耦合模理论分析了长周期光纤光栅(LPFG)的折射率传感特性,给出了LPFG 的谐振波长相对于环境折射率变化时的漂移量解析表达式.对 LPFG 的折射率传感特性进行了数值模拟.结果表明:在光栅周期不变的情况下,当包层折射率小于且接近外界环境折射率时,波长的漂移量增大,且对应的模次越高、包层半径越小、包层折射率越小,波长漂移量越大,即 LPFG 对应于外界折射率传感灵敏度得到显著提高;当外界环境折射率大于包层折射率时,光栅的谐振波长将近似不变.  相似文献   

8.
镀膜长周期光纤光栅的折射率传感特性   总被引:1,自引:1,他引:1  
基于严格的光栅三包层模型及其色散方程,对镀膜长周期光纤光栅的折射率传感特性进行了详细的研究.研究发现,镀膜长周期光纤光栅的谐振波长随环境折射率的变化而变化,而且这种变化有一个跳跃,跳跃后的变化与跳跃前相同:如跳跃前向短波方向漂移,则跳跃后也向短波方向漂移.镀膜后,长周期光纤光栅的折射率探测范围得到拓宽,而且探测的灵敏度...  相似文献   

9.
基于长周期光纤光栅的模式耦合机理,提出一种快速模拟长周期光纤光栅折射率特性的方法。该方法在计算包层模式的有效折射率时分开计算,在环境折射率小于包层折射率时采用二分法和分步搜索法结合计算包层模式的有效折射率,在环境折射率大于包层折射率时采用Nelder-Mead加分步搜索法求解包层模式的有效折射率。在应用谐振波长的决定式求解与环境折射率的匹配的谐振波长时,采用变区间应用二分法求解而不是传统的逐步搜索法求解谐振波长。数值结果与实验结果做了对比,两者基本一致。实践证明,该方法方便快捷,比一般的方法速度提高7倍以上。  相似文献   

10.
通过分析单模光纤SMF中的LPG对的传输特性及几个因素对干涉透射谱的影响,并结合前期工作,主要研究光子晶体光纤(PCF)中的LPG对在1665 nm附近U波段传输特性.结合光栅耦合强度与波长的关系以及拍长与波长的关系,对PCF中LPG对的参数进行选择设计,得到双谐振波长的干涉谱,级联LPG对构成的MZI干涉光谱在两个谐振波长处由于耦合强度不同而不同.  相似文献   

11.
长周期光纤光栅导模与包层模的耦合分析   总被引:4,自引:0,他引:4  
孔梅  周文  汤伟中 《光学学报》1999,19(3):69-373
在对包层模进行远离截止近似下,利用耦合模型分析了长周期光纤光栅中导模与包层模的耦合,并与短周期光纤光栅进行了比较。指出了长周期光栅的工作特性可由它的相位匹配条件来说明。计算结果与实验现象相符。  相似文献   

12.
长周期光纤光栅的研究   总被引:25,自引:6,他引:19  
在对长周期光纤光栅的光学特性进行分析的基础上,通过适当设计的程控自动扫描曝光系统,采用具有高度灵活必珠逐点写入技术在经过氢载处理的普通单模光纤上成功地进行了长周期光纤光栅的研制。随后对氢载光纤中长周期光纤光栅的稳定性问题进行了分析与研究。  相似文献   

13.
长周期光纤光栅温度稳定性分析及其改善   总被引:5,自引:0,他引:5  
利用模式耦合理论推导出长周期光纤光栅(LPG)温度特性的一般关系式;通过测试周期为400~600μm的长周期光纤光栅的温度特性,确定了芯内导模与被耦合的不同包层模间的热光系数差,并结合长周期光栅温度特性关系式总结出长周期光栅温度灵敏度与光栅周期和耦合包层模阶次的对应关系;在理论与实验的基础上,提出了改善长周期光栅温度稳定性的方法。  相似文献   

14.
1IntroductionSincethediscoveryofphotosensitivityingermanosilicateopticalfibersbyHiletal.in1978[1],significantprogreshasbeenma...  相似文献   

15.
报道了一种用高频CO2激光器在有纳米环结构的新型弯曲不敏感光纤上写入的长周期光纤光栅。实验表明只有周期在两个特定的范围内的长周期光纤光栅在1200-1650nm波长范围内会有明显的谐振峰出现。对两个周期分别为295μm和470μm的长周期光纤光栅的温度和应变特性进行了研究。实验结果显示周期为295μm的长周期光纤光栅的...  相似文献   

16.
写于载氢光纤上的长周期光纤光栅经过高温退火后,对其进行紫外均匀曝光能够有效改变其耦合特性,随着曝光量的增加,其共振波长向长波方向移动,共振峰强度先增大继而减小,并对此给出了理论解释。  相似文献   

17.
18.
19.
杨颖  顾铮天 《光学学报》2012,32(10):1006006-79
基于光纤光栅的模式耦合理论,采用传输矩阵法对啁啾长周期光纤光栅(LPFG)的超宽带滤波特性进行了分析。研究表明当啁啾LPFG的纤芯模同时与同向传输的多个阶次的包层模发生耦合,且与多个不同阶次包层模对应的谐振峰交叠时,其传输谱带宽可扩展到500nm以上,可用做超宽带带阻滤波器。传输谱带宽随模式序数、啁啾系数、光栅长度、周期和折射率调制量的增加单调递增,但随光纤包层半径的增大单调递减。采用高斯折射率切趾技术抑制了传输谱旁瓣,为设计超宽带滤波器提供了新的方法。  相似文献   

20.
非啁啾取样光纤布拉格光栅反射峰值波长的分析   总被引:2,自引:0,他引:2  
推导并验证了非啁啾取样光纤布拉格光栅(SFBG)反射谱中反射峰值波长的表达式。基于种子光栅中心波长对应的折射率调制深度和取样光纤布拉格光栅折射率调制函数的傅里叶级数展开式,提炼出取样光纤布拉格光栅的折射率调制深度和各阶光栅周期,从而导出其反射峰值波长的表达式。由于考虑了占空比、取样周期等取样光纤布拉格光栅的结构参量,因而表达式能够描述反射峰的分布。仿真实验中,不同占空比或取样周期下计算出的反射峰值波长、信道间隔符合数值反射谱。该表达式既适用于均匀取样光纤布拉格光栅,也适用于交流切趾和交直流切趾取样光纤布拉格光栅。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号