首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of MWO4 (M=Mg, Zn, Cd) and MgMoO4 doped with Cr3+ have been grown by the flux growth method. Their optical spectra have been systematically measured and assigned on the basis of the classical Ligand Field Theory. The exchange charge model of the crystal field has then been applied to calculate the crystal field parameters (CFPs) and the energy levels of the Cr3+ ion in all studied crystals. These are in reasonable agreement with the experimental data. Systematic trends in the CFPs values, crystal field splittings and Racah parameters have been evidenced and their relation with sizes and symmetry properties of the host cavities occupied by Cr3+ has been pointed out.  相似文献   

2.
Infrared optical absorption has been used to study OHimpurities into congruent co-doped LiNbO3:Cr3+:ZnO crystals doped with different Zn2+ concentration. The OH IR absorption spectra present three bands that can be associated with different OH complex centres available in the lattice. For crystals with lower Zn2+ concentrations (<4.7%) only one IR absorption band centred at 2867 nm (3490 cm−1) is reported which is associated with the OH unperturbed vibration. For crystals with higher Zn2+ concentrations (>4.7%), two new bands associated with OHvibration in distortion environment are reported. These bands are centred at 2827 nm (3537 cm−1) and 2847 nm (3512 cm−1) and can be associated with OH-Zn2+ and Cr3+(Li+)-OH-Zn2+(Int.) complex centres, respectively. Electron paramagnetic resonance (EPR) has been used to identify the Cr3+ centres in the lattice of the doped LiNbO3:ZnO crystals.  相似文献   

3.
Fully relativistic calculations of the energy levels, absorption spectra, molecular orbitals (MO) compositions, covalence effects and energies of the charge transfer (CT) transitions for three isoelectronic ions Cr3+, Mn4+, Fe5+ in the SrTiO3 (STO) crystal have been performed. The recently developed first-principles approach to the analysis of the absorption spectra based on the first principles discrete variational multi-electron method (DV-ME) (K. Ogasawara et al., Phys. Rev. B 64 (2001) 115413) was used in the calculations. As a result, energy levels of the above ions, their absorption spectra and energies of the lowest CT transitions were all calculated. By performing analysis of the MO population, it was shown that the degree of covalence of the chemical bonds between 3d ions and oxygen ions in SrTiO3 increases in the following order: Cr3+→Mn4+→Fe5+, whereas the CT energies monotonically decrease in the same order.  相似文献   

4.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

5.
Exchange charge model of crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33-50.] was used to analyze the energy level schemes of Ni2+ ion at both possible positions (octahedral and tetrahedral) in Ca3Sc2Ge3O12. The crystal field parameters were calculated from the crystal structure data; the crystal field Hamiltonian was diagonalised in the complete basis consisting of 25 wave functions of all LS terms of the Ni2+ ion. Results of calculations are in a good agreement with experimental data. From the experimental spectra available in the literature, the Huang-Rhys parameter S=3.5 and effective phonon energy were evaluated for the octahedral Ni2+ ion.  相似文献   

6.
Ni3–xCr2x/3(PO4)2 (x=0 and 0.02) microcrystalline powders were obtained as single phases via a modified sol–gel Pechini-type in situ polymerizable complex method. The samples were characterized using scanning electron microscopy, X-ray diffraction, cathodoluminescence (CL), and thermoluminescence (TL) techniques. We found that Cr3+ doping modified the average particle and distribution. The mean particle size was 0.441 μm for Ni3(PO4)2 and 0.267 μm for Ni2.98Cr0.013(PO4)2. The results also reveal that Cr3+ doping notably enhanced the CL and TL UV-blue emission.  相似文献   

7.
The exchange charge model of crystal field theory has been used to analyze systematically the ground state absorption spectra of isoelectronic Cr3+, Mn4+, and Fe5+ ions in an octahedral coordination in the SrTiO3 crystal. The parameters of the crystal field acting on the valence electrons of impurity ions are calculated from the available crystal structure data. A special attention is paid to the analysis of dependencies of the crystal field invariants and covalence effects on the impurity ion. It is shown numerically that the covalence effects between the above impurity ions and ligands increase with an increase of the 3d-ion oxidation state.  相似文献   

8.
Erbium and ytterbium codoped double tungstates NaY(WO4)2 crystals were prepared by using Czochralski (CZ) pulling method. The absorption spectra in the region 290-2000 nm have been recorded at room temperature. The Judd-Ofelt theory was applied to the measured values of absorption line strengths to evaluate the spontaneous emission probabilities and stimulated emission cross sections of Er3+ ions in NaY(WO4)2 crystals. Intensive green and red lights were measured when the sample were pumped by a 974 nm laser diode (LD), especially, the intensities of green upconversion luminescence are very strong. The mechanism of energy transfer from Yb3+ to Er3+ ions was analyzed. Energy transfer and nonradiative relaxation played an important role in the upconversion process. Photoexcited luminescence experiments are also fulfilled to help analyzing the transit processes of the energy levels.  相似文献   

9.
This paper reports polarized spectral properties and energy levels of Cr3+ in KAl(MoO4)2 crystal. The absorption and emission cross sections are estimated as 3.72×10-20 cm2 at 669 nm and 2.74×10-20 cm-2 at 823 nm for σ-polarization, respectively. The energy levels of Cr3+ ion in KAl(MoO4)2 crystal were calculated based on the Tanabe-Sugano theory. It is suggested that Cr3+ ions occupy at an intermediate crystal field site in Cr3+:KAl(MoO4)2.  相似文献   

10.
The Dy3+-doped NaY(MoO4)2 single crystals were grown successfully by the Czochralski technique. The main spectroscopic properties (absorption, luminescence, decay curve) of Dy3+-doped NaY(MoO4)2 have been determined for both the σ and π polarizations. By using the Judd-Ofelt theory, the measured room temperature absorption spectra were applied to determine the intensity parameters, spontaneous transition probabilities, branching ratios, and radiative lifetimes of Dy3+ transitions. The results show that the Dy3+-doped NaY(MoO4)2 crystal may realize the yellow laser operation.  相似文献   

11.
Raman spectra of as-grown and vapor transport equilibration (VTE) treated Er:LiNbO3 crystals, which have different cut orientations (X-cut and Z-cut), different Er-doping levels (Er:(0.2, 0.4 and 2.0 mol%)LiNbO3) and different VTE durations (80, 120, 150 and 180 h), were recorded at room temperature in the wavenumber range 50-1000 cm−1 by using backward scattering geometry. The spectra were attributed on the basis of their spectral features and the previous experimental work and the most recent theoretical progress in lattice dynamics on pure LiNbO3. In comparison with the pure crystal the most remarkable effect of Er-doping on the Raman spectrum is observed for the E(TO9) mode. It does not appear at 610 cm−1 as the pure crystal, but locates at 633 cm−1. In addition, the doping also results in the lowering of the Raman phonon frequency, the broadening of the Raman linewidth and the changes of the relative Raman intensity of some peaks. The VTE treatment results in the narrowing of the linewidth, the recovery of the lowered phonon frequency and the further changes of relative Raman intensity. The narrowing of Raman linewidth indicates that the VTE processing has brought these crystals closer to stoichiometric composition. The VTE treatment has induced the formation of a precipitate ErNbO4 in the high-doped Er(2.0%):LiNbO3 crystals whether X- or Z-cut. For these precipitated crystals, besides above linewidth and phonon frequency features, they also display more significant Raman intensity changes compared with those not precipitated crystals. In addition, a slight mixing between A1(TO) and E(TO) spectra is also observed for these precipitated crystals. Above doping and VTE effects on Raman spectra were quantitatively or qualitatively correlated with the characteristics of the crystal structure and phonon vibrational system.  相似文献   

12.
A spectroscopic investigation on the effect of Ce3+ co-doping in fluoride KY3F10:Pr3+ crystals is presented. In particular spectroscopic measurements of three different samples of KY3F10 crystal doped with 0.3at% Pr3+ and co-doped with 0at%, 0.17at% and 0.3at% Ce3+ are discussed. Details on the growth of the crystals are also reported. Measurements were performed in the temperature range 10-300 K. Fluorescence and lifetime measurements have shown a cross relaxation between 3P0-1D2 levels of Pr3+ and 2F7/2-2F5/2 of Ce3+. Data exhibit that this effect is strictly related to the Cerium concentration.  相似文献   

13.
A Pr3+-doped KY(MoO4)2 single crystal was grown by the Czochralski method. The polarized absorption and fluorescence spectra of the Pr3+:KY(MoO4)2 crystal were measured at room temperature. The stimulated emission cross-sections for the transitions from the 3P0 multiplet were estimated from the fluorescence spectra. The fluorescence lifetime of the 3P0 multiplet was estimated from the fluorescence decay curve at room temperature. The analysis of spectral properties shows that the Pr3+:KY(MoO4)2 crystal is a promising gain medium for visible lasers.  相似文献   

14.
The electronic structure of the Tm3+ in YAl3(BO3)4 crystals has been investigated by means of low temperature absorption and emission spectroscopy in the 5000-30,000 cm−1 range. The assignment of the lines composing the observed manifolds to transitions between the Stark levels of Tm3+ is complicated by the presence of extra features having different origins. The energy levels scheme of the doping ion has been compiled after a careful analysis of the spectra by reproducing the observed transitions by means of theoretical calculations based on a Hamiltonian, including the free ion and the crystal field (CF) terms. The agreement between experimental and calculated energy values was reasonably good, the overall r.m.s. deviation being 16 cm−1. The resulting CF parameters have been tabulated and compared with those reported in literature for other rare earth ions doped in YAB. The analysis of trends observed along the lanthanide series evidences some inconsistencies and the necessity of a systematic investigation of these systems.  相似文献   

15.
Impedance spectroscopy measurements and synchrotron X-ray diffraction studies of Sc2(WO4)3 at 400°C have been carried out as a function of pressure up to 4.4 GPa. Ionic conductivity shows normal decrease with increase in pressure up to 2.9 GPa, but then increases at higher pressures. The XRD results show that Sc2(WO4)3 undergoes pressure-induced amorphization at pressures coincident with the reversal in conductivity behavior. The loss of crystal structure at high pressure is consistent with growing evidence of pressure-induced amorphization in negative thermal expansion materials, such as Sc2(WO4)3. The increase in conductivity in the amorphized state is interpreted as the result of an increase in structural entropy and a concomitant reduction of energy barriers for ionic transport.  相似文献   

16.
The intrinsic formation of polyatomic defects in Sc2(WO4)3-type structures is studied by Mott Littleton calculations and Molecular Dynamics simulations. Defects involving the WO42− tetrahedron are found to be energetically favorable when compared to isolated W and O defects. WO42− Frenkel and (2Sc3+, 3WO42−) Schottky defects exhibit formation energies of 1.23 eV and 1.97 eV, respectively and therefore may occur as intrinsic defects in Sc2(WO4)3 at elevated temperatures. WO42− vacancy and interstitial migration processes have been simulated by classical Molecular Dynamics simulations. The interstitial defect exhibits a nearly 10 times higher mobility (with a migration energy of 0.68 eV), than the vacancy mechanism (with a slightly higher migration energy of 0.74 eV) and thus should dominate the overall ionic conduction. Still both models reproduce the experimental activation energy (0.67 eV) nearly within experimental uncertainty.  相似文献   

17.
The study of the optical properties of a LiLuF4 crystal doped with Tm3+ yielded the discovery of a strong temperature dependence of the Tm-Tm diffusion coefficient. Spectroscopic characteristics have been investigated as a function of the sample temperature, with particular regard to the luminescence decay following pulsed excitation. An appreciable excitation of the lifetime of the 3F4 manifold is observed over the temperature range 8.9-298 K. The Judd-Ofelt calculations point out a radiative lifetime considerably longer than the experimental one. These facts suggest a theoretical interpretation based on the presence of impurities that quench the manifold and on a temperature-dependent energy migration between Tm3+ ions. A one-parameter best fit of the experimental measurements strongly confirms this hypothesis. Weak OH ion concentration is detected by means of IR and UV spectra, thus supporting the theoretical interpretation.  相似文献   

18.
In the present paper, we report on consistent crystal field calculations of the Cr3+ ions energy levels in KAl(MoO4)2 using actual D3d site symmetry of the Cr3+ position and employing the exchange charge model (ECM) of the crystal field. In addition to the energy level calculations, the Huang-Rhys factor S=5.7 and effective phonon energy ?ω=268 cm-1 were evaluated in the single configurational coordinate model. Detailed treatment of the microscopic crystal field effects in the ECM framework allowed to obtain analytical dependence of the crystal field strength 10Dq on the Cr-O interionic distance and extracting from it the values of some parameters of the electron-vibrational interaction (EVI) in the KAl(MoO4)2:Cr3+ system. All obtained results are compared with experimental data and discussed; agreement between the calculated and experimental parameters is good.  相似文献   

19.
A detailed analysis of the energy level structure of the six-fold coordinated Cr3+ ion in the chromium oxide Cr2O3 is performed using the exchange charge model of the crystal field theory. Parameters of the crystal field acting on the Cr3+ optical electrons are calculated from the crystal structure data for the [CrO6]9− impurity center. The energy levels obtained are compared with the experimental absorption spectra for the considered crystal; a good agreement with experimental data is demonstrated. One possible explanation for the ultraviolet p1 absorption band is proposed based on the results of crystal field calculations.  相似文献   

20.
Exchange charge model (ECM) of crystal field was used to calculate the crystal field parameters (CFPs) and model the energy levels for Ni2+ ion in LiGa5O8, MgF2 and AgCl crystals. Calculated energy levels (including splitting of the orbital triplets) are in good agreement with experimental absorption spectra. Covalent effects were shown to play an important role in all considered crystals. Bilinear forms built up from the overlap integrals between (Ni2+-Cl)→(Ni2+-O2−)→(Ni2+-F) pairs were considered a quantitative measure of the covalent (nephelauxetic) effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号