首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Magnetic properties of the group II–V semiconductor CdSb single crystals doped with Ni (2 at%) are investigated. Deviation of the zero-field-cooled susceptibility, χZFC, from the field-cooled susceptibility is observed below 300 K, along with a broad maximum of χZFC (T) at Tb in fields below the anisotropy field BK∼4 kG. Tb(B) obeys the law [Tb(B)/Tb(0)]1/2=1–B/BK with Tb(0)∼100 K. The magnetization exhibits saturation above ∼20–30 kG, a weak temperature dependence and anisotropy of the saturation value Ms. The coercive field is much smaller then BK and displays anisotropy inverted with respect to that of Ms. Such magnetic behavior is expected for spheroidal Ni-rich Ni1−xSbx nanoparticles with high aspect ratio, broad distribution of the sizes and with orientations of the major axis distributed around a preferred direction.  相似文献   

2.
The exchange bias (EB) effect has been studied in Ni/NiO nanogranular samples obtained by annealing in H2, at selected temperatures (200≤Tann≤300 °C), NiO powder previously milled for 5, 10, 20 and 30 h. Both the as-milled NiO powders and the Ni/NiO samples have been analyzed by X-ray diffraction and the exchange bias properties have been investigated in the 5-200 K temperature range. The structure and the composition of the Ni/NiO samples can be satisfactorily controlled during the synthesis procedure by varying both Tann and the milling time of the precursor NiO powders. In particular, by increasing this last parameter, the mean grain size of the NiO phase reduces down to the final value of 16 nm and the microstrain increases, which is consistent with an enhancement of the structural disorder. The structure of the milled NiO matrix strongly affects the process of nucleation and growth of the Ni nanocrystallites induced by the H2 treatments, so that, Tann being equal, the amount and the mean grain size DNi of the Ni phase vary substantially in samples having different milling times. Such features of the Ni phase determine the extent of the Ni/NiO interface and consequently the magnitude of the exchange field Hex: the highest value (∼940 Oe) has been measured at T=5 K in a sample containing ∼7 wt% Ni and with DNi=19 nm. However, in Ni/NiO samples with very different structural characteristics and different values of Hex at T=5 K, the EB effect vanishes at the same temperature (∼200 K) and the same thermal dependence of Hex is observed. We consider that the evolution of the EB effect with temperature is ultimately determined by the microstructure of the Ni/NiO interface, which cannot be substantially modified by changing the synthesis parameters, milling time and Tann.  相似文献   

3.
The existence of a remanent magnetization (M rem) on switching off the field of a field cooled (FC) sample of a highT c superconductor is often reported. It has recently been argued thatM rem should equal the difference in FC and zero field cooled (ZFC) magnetizations (M FCM ZFC) in hard superconductors and this has been demonstrated to hold in single crystals of YBCO at 4.2K over a limited range ofH values. We report the detailed magnetization measurements under various thermomagnetic histories (of whichM rem is one special case) on two specimens of Nb, which show different extents of flux trapping. We find that there are in general three regions inH, T space, corresponding toM rem+M ZFCM FC=0,M rem<(M FCM ZFC) andM rem>(M FCM ZFC). At anyT, the equality holds forH<H c1(T), and forHH c2 (M FCM ZFC) asymptotically vanishes and thereM rem>(M FCM ZFC). We show that there exists an intermediate region in all hard superconductors, whereM rem<(M FCM ZFC). The range over which this situation persists, however, depends on the degree of irreversibility in a sample. We can explain qualitatively all the history dependent magnetization data in terms of the critical state model. We point out an inconsistency in an earlier analysis to determineH c1(T) from such data in YBCO. We also propose a new criterion for putting limits onH c1(T) in hard superconductors.  相似文献   

4.
The magnetization of native horse spleen ferritin protein is measured in pulsed magnetic fields to 55 T at T=1.52 K. The magnetization rises smoothly with negative curvature due to uncompensated Fe3+ spins and with a large high field slope due to the underlying antiferromagnetic ferritin core. Even at highest fields the magnetic moment is only ∼4% of the saturation moment of the full complement of Fe3+ in the ferritin molecule. The AC magnetic susceptibility, χAC(T,f), responding to the uncompensated spins, reaches a maximum near the superparamagnetic blocking temperature with the temperature of the maximum, TM, varying with excitation frequency, TM−1 α log f for 10?f?104 Hz.  相似文献   

5.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

6.
We present detailed magnetization and magneto-transport studies on the title compound SmCoAsO. In a recent paper we reported (Awana et al., 2010 [1]) the complex magnetism of this compound. SmCoAsO undergoes successive paramagnetic (PM)-ferro-magnetic (FM)-anti-ferro-magnetic (AFM) transitions with decrease in temperature. This is mainly driven via the c-direction interaction of Sm4f (SmO layer) spins with adjacent (CoAs layer) ordered Co3d spins. In this article we present an evidence of kinetic arrest for FM-AFM transition. The isothermal magnetization (MH) loops for SmCoAsO exhibited the meta-magnetic transitions at 6, 8 and 10 K at around 80, 60 and 50 kOe fields, respectively, with characteristic hysteresis shoulders along with the non-zero moment at the origin, thus suggesting the possibility of kinetic arrest. Suggested kinetic arrest is further evident in zero field-cooled (ZFC) and field-cooled (FC) hysteresis under high fields of up to 140 kOe magnetization (MT) and the magneto-transport measurements R(T)H during FM-AFM transition. The time dependent moment experiments exhibited very small (∼2-3%) increase of the same below 20 kOe and decrease for 30 kOe at 15 K.  相似文献   

7.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

8.
The α-Fe2O3/SiO2 nanocomposite containing 45 wt% of hematite was prepared by the sol-gel method followed by heating in air at 200 °C. The so-obtained composite of iron(III) nanoparticles dissolved in glassy silica matrix was investigated by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRPD confirms the formation of a single-phase hematite sample, whereas TEM reveals spherical particles in a silica matrix with an average diameter of 10 nm. DC magnetization shows bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) branches up to the room temperature with a blocking temperature TB=65 K. Isothermal M(H) dependence displays significant hysteretic behaviour below TB, whereas the room temperature data were successfully fitted to a weighted Langevin function. The average particle size obtained from this fit is in agreement with the TEM findings. The small shift of the TB value with the magnetic field strength, narrowing of the hysteresis loop at low applied field, and the frequency dependence of the AC susceptibility data point to the presence of inter-particle interactions. The analysis of the results suggests that the system consists of single-domain nanoparticles with intermediate strength interactions.  相似文献   

9.
The temperature dependence of the ac susceptibility (χ) at constant applied magnetic field was investigated in the paramagnetic region of the quasi-2D ferromagnet (CH3NH3)2CuCl4. Above the Curie temperature (TC=8.85 K) a maximum in the χ(T,H) curves was observed at Tm(H). The temperature at the maximum increases with increasing applied field. This anomaly is related to short range fluctuations close the order transition. The behavior of Tm(H) is governed by the gap exponent of the scaling function (Δ=γ+β). We found Δ=2.2±0.1 in very good agreement with the previously known values of γ and β.  相似文献   

10.
Systematic studies on the structural, transport and magnetic properties of SrRu1−xCuxO3 (x=0.0–0.2) compounds have been performed. SrRu0.8Cu0.2O3 shows a tetragonal structure unlike the other compositions which exhibit a pseudo-cubic structure. Low temperature powder X-ray diffraction data of SrRu0.8Cu0.2O3 collected at a synchrotron beam line reveals that the tetragonal structure is stable down to 8 K. Ferromagnetic transition temperatures (Tc) are significantly reduced from 160 to 34 K with Cu doping. All the compositions exhibit irreversibilities in MZFC(T) and MFC(T) curves ascribable to the presence of domain structures. Magnetic susceptibility measurements show that the copper ions are anti-ferromagnetically coupled for concentrations higher than x=0.16. The antiparallel arrangement of Ru5+ ions with its neighboring cations also contributes to the large reduction in the observed magnetic moment. X-ray photoemission spectroscopy measurements show evidence for both tetravalent and pentavalent Ru ions while copper is in a divalent state. We conclude from our resistivity data that Cu2+ substitution promotes a polaronic type of conductivity.  相似文献   

11.
A study of the half-metallic character of the semi Heusler alloys Co1−xCuxMnSb (0?x?0.9) is presented. We investigated the saturation magnetization MS at temperatures from 5 K to room temperature and the temperature dependence of the DC magnetic susceptibility χ above Curie temperature TC. The magnetic moments at 5 K, for most compositions are very close to the quantized value of 4 μB for Mn3+ ion, the compound with 90% Co substituted by Cu is still ferromagnetic with MS (5 K)=3.78 μB/f.u. These results emphasize the role of Co atoms in maintaining the ferromagnetic order in the material. The Curie temperature is decreased from 476 K to about 300 K as the Cu content increases from 0% to 90%. Above TC, the χ−1 vs T curves follow very well the Curie–Weiss law. The effective moment μeff and paramagnetic Curie temperature θ are derived. A comparison between the values of MS at 5 K and μeff shows a transition from localized to itinerant spin system in these compounds.  相似文献   

12.
The structural, magnetic and transport properties of the antiperovskite AlCxMn3 (1.0≤x≤1.4) are investigated. It is found that the lattice parameter a increases monotonously with nominal carbon concentration x. The Curie temperature TC increases with increasing x from 1.0 to 1.1 and then decreases with further increasing x. The highest TC value is 364 K, about 70 K higher than that of stoichiometric AlCMn3 reported previously. This may be attributed to a competition between the lattice expansion and the strong Mn 3d-C 2p hybridization. Below 100 K, the resistivity can be well described as ρ(T)=ρ0+AT2, corresponding to the electron-electron scattering. A increases with x, suggesting certain changes in the electronic structure, e.g. carrier density. Above 250 K, all ρ(T) curves depart from the linear dependence on temperature and seem to take on a tendency towards saturation.  相似文献   

13.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

14.
For NiO nanorods of 5 nm diameter prepared by sol-gel technique, variations of the magnetization M with temperature T (5-370 K) and magnetic field H up to 55 kOe are reported. Also, temperature variations of the EMR (electron magnetic resonance) parameters (intensity I0, linewidth ΔH and resonance field Hr) of an observed line due to uncompensated spins are followed for The M vs. H and T variations yield a blocking above which the data fits modified Langevin function with magnetic moment μp?1240 μB/particle. For the EMR line, I0 decreases rapidly for T<TB, and the line broadens and shifts to lower H with lowering T, following the lineshift δHr=(ΔH)n with n?2.8. This is close to the value of n=3 expected for randomly oriented particles.  相似文献   

15.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

16.
Polymer-coated magnetic nanoparticles are hi-tech materials with ample applications in the field of biomedicine for the treatment of cancer and targeted drug delivery. In this study, magnetic nanoparticles were synthesized by chemical reduction of FeCl2 solution with sodium borohydride and coated with amine-terminated polyethylene glycol (aPEG). By varying the concentration of the reactants, the particle size and the crystallinity of the particles were varied. The particle size was found to increase from 6 to 20 nm and the structure becomes amorphous-like with increase in the molar concentration of the reactant. The magnetization at 1 T field (M1T) for all samples is > 45 emu/g while the coercivity is in the range of 100-350 Oe. When the ethanol-suspended particles are subjected to an alternating magnetic field of 4 Oe at 500 kHz, the temperature is increased to a maximum normalized temperature (3.8 °C/mg) with decreasing particle size.  相似文献   

17.
Single-crystals of the new ferromagnetic superconductor UCoGe have been grown. The quality of as-grown samples can be significantly improved by a heat-treatment procedure, which increases the residual resistance ratio (RRR) from ∼5 to ∼30. Magnetization M(T) and resistivity ρ(T) measurements show the annealed samples have a sharp ferromagnetic transition with a Curie temperature TC is 2.8 K. The ordered moment of 0.06 μB is directed along the orthorhombic c-axis. Superconductivity is found below a resistive transition temperature Ts=0.65 K.  相似文献   

18.
Magnetic nanoparticles of nickel ferrite (NiFe2O4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles (d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ∼11 nm and then decreases for larger particles. Typical blocking effects were observed below ∼225 K for all the prepared samples. The superparamagnetic blocking temperature (TB) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.  相似文献   

19.
A comparison has been made of irreversibility temperature determined by four different methods in few specimens of lead (type-I) and niobium (type-II). The merger ofM ZFC(T) andM FC(T) curves giveT r(H) values lower than those evident from vanishing the hysteresis in isothermal DC magnetization. The identification of peak temperature inx H (T) data withT r(H) is appropriate only if the contribution from changes in the normal state electrodynamics can be isolated and the peak is narrow. The appearance of differential paramagnetic effect inx H (T) data is adequate to imply reversibility, however, its efficacy to precisely locate irreversibility line remains to be established.  相似文献   

20.
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号