首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase transformations of titanium metal have been studied at temperatures and pressures up to 973 K and 8.7 GPa using synchrotron X-ray diffraction. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 345 K/GPa, and the transition pressure at room temperature is located at 5.7 GPa. The volume change across the α-ω transition is ΔV=0.197 cm3/mol, and the associated entropy change is ΔS=0.57 J/mol K. Except for ΔV, our results differ substantially from those of previous studies based on an equilibrium transition pressure of 2.0 GPa at room temperature. The α-ω-β triple point is estimated to be at 7.5 GPa and 913 K, which is comparable with previous results obtained from differential thermal analysis and resistometric measurements. An update, more accurate phase diagram is established for Ti metal based on the present observations and previous constraints on the α-β and ω-β phase boundaries.  相似文献   

2.
The high-pressure phase transition of CS2 was studied by combing ab initio molecular dynamics with total energy calculations. At 300 K the pieces of polymer structure were found to appear at 10 GPa in the molecular dynamics run, and further the CS4 tetrahedral structure to appear at about 20 GPa. The phase transition was then studied in the structure of Cmca, α-quartz and β-quartz by using the first-principle total energy calculation method. A phase transition from Cmca to β-quartz was found at 10.6 GPa. The calculated lattice constants of β-quartz at atmospheric pressure are a=5.44 and c/a=1.138 with B0=95 GPa. The calculation has also indicated that CS2 decomposes at 20 GPa and below 1000 K.  相似文献   

3.
The phase diagram of zirconium metal has been studied using synchrotron X-ray diffraction and time-of-flight neutron scattering at temperatures and pressures up to 1273 K and 17 GPa. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 473 K/GPa, and the extrapolated transition pressure at ambient temperature is located at 3.4 GPa. For the ω-β transition, the phase boundary has a negative dT/dP slope of 15.5 K/GPa between 6.4 and 15.3 GPa, which is substantially smaller than a previously reported value of −39±5 K/GPa in the pressure range of 32-35 GPa. This difference indicates a significant curvature of the phase boundary between 15.3 and 35 GPa. The α-ω-β triple point was estimated to be at 4.9 GPa and 953 K, which is comparable to previous results obtained from a differential thermal analysis. Except for the three known crystalline forms, the β phase of zirconium metal was found to possess an extraordinary glass forming ability at pressures between 6.4 and 8.6 GPa. This transformation leads to a limited stability field for the β phase in the pressure range of 6-16 GPa and to complications of high-temperature portion of phase diagram for zirconium metal.  相似文献   

4.
The crystalline structure of a new compound containing the 1,3,4-oxadiazole moiety, 4-(5-methyl-1,3,4-oxadiazole-2yl-)-N,N′-dimethyl-phenylamine (MODPA) was determined. It shows a monoclinic structure with space group P21/c and lattice parameters: a=1.02997(6), b=0.64840(4), c=1.58117(10) nm and β=99.4820(10)°. To study the intermolecular interactions in oxadiazole containing organic crystals, X-ray studies on MODPA and 2,5-diphenyl-1,3,4-oxadiazole (DPO) were performed up to 5 GPa at room temperature. The Murnaghan equation of state is used to describe the compression behaviour of both substances. From these results, the bulk modulus and its pressure derivative were determined. The values obtained are: K0=6.3 GPa and K0=6.8 for MODPA and K0=7.3 GPa and K0=6.7 for DPO. Additionally, measurements under increasing temperature at ambient pressure were carried out to evaluate the thermal expansion coefficient: α=1.8×10−4 K−1 for MODPA and α=1.9×10−4 K−1 for DPO.  相似文献   

5.
We have carried a detailed theoretical study on the geometry, density of states, elastic properties, sound velocities and Debye temperature of α-, β-, c- and p-C3N4 compounds under a maximum of pressure up to 100 GPa by using first principles calculations. The optimized lattice constants under zero pressure and zero temperature agreed well with the previous experimental and theoretical results. The band gaps of the four types of dense C3N4 were widened gradually with the increase of pressure. The calculated Poisson’s ratio γ and B/G values suggest α-, c- and p-C3N4 are brittle materials under 0–100 GPa, whereas β-C3N4 will become a ductile material as external pressure reaches 57 GPa. We found that the Debye temperature of the four dense C3N4 gradually reduces in the order of c-C3N4>p-C3N4>α-C3N4>β-C3N4 at 0 GPa and 0 K. However, the Debye temperature of c-C3N4 was lower than p-C3N4 when external pressure exceeds 6.3 GPa. It may hint that the results could be served as a valuable prediction for further experiments.  相似文献   

6.
In situ high-pressure angle dispersive synchrotron X-ray diffraction studies of molybdenum diselenide (MoSe2) were carried out in a diamond-anvil cell to 35.9 GPa. No evidence of a phase transformation was observed in the pressure range. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K0T, was determined to be 45.7±0.3 GPa with its pressure derivative, K0T, being 11.6±0.1. It was found that the c-axis decreased linearly with pressure at a slope of −0.1593 when pressures were lower than 10 GPa. It showed different linear decrease with the slope of a −0.0236 at pressures higher than 10 GPa.  相似文献   

7.
The high-pressure behavior of rhenium disulfide (ReS2) has been investigated to 51.0 GPa by in situ synchrotron X-ray diffraction in a diamond anvil cell at room temperature. The results demonstrate that the ReS2 triclinic phase is stable up to 11.3 GPa, at which pressure the ReS2 transforms to a new high-pressure phase, which is tentatively identified with a hexagonal lattice in space group P6?m2. The high-pressure phase is stable up to the highest pressure in this study (51.0 GPa) and not quenchable upon decompression to ambient pressure. The compressibility of the triclinic phase exhibits anisotropy, meaning that it is more compressive along interlayer directions than intralayer directions, which demonstrates the properties of the weak interlayer van der Waals interactions and the strong intralayer covalent bonds. The largest change in the unit cell angles with increasing pressures is the increase of β, which indicates a rotation of the sulfur atoms around the rhenium atoms during the compression. Fitting the experimental data of the triclinic phase to the third-order Birch-Murnaghan EOS yields a bulk modulus of KOT=23±4 GPa with its pressure derivative KOT′= 29±8, and the second-order yields KOT=49±3 GPa.  相似文献   

8.
We report first principles results of a detailed investigation directed to elucidate mechanistic aspects of the zircon-reidite phase transition in ZrSiO4. The calculated thermodynamic boundary is located around 5 GPa, and the corresponding thermal barrier, estimated from temperatures at which the transition is observed at zero and high pressure, is 133 kJ/mol. Under a martensitic perspective, we examine two different transition pathways at the thermodynamic transition pressure. First, the direct, displacive-like, tetragonal I41/a energetic profile is computed using the c/a ratio as the transformation parameter, and yields a very high activation barrier (236 kJ/mol). Second, a quasi-monoclinic unit cell allows us to characterize a transition path from zircon (β=90°) to reidite (β=114.51°) with an activation barrier of around 80 kJ/mol at β=104°. This energy is somewhat lower than our previous estimation and supports the reconstructive nature of the transformation at the thermodynamic transition pressure.  相似文献   

9.
A laser-heated sample in a diamond anvil cell and synchrotron X-ray radiation was used to carry out structural characterization of the phase transformation of Fe2O3 at high pressures (30-96 GPa) and high temperature. The Rh2O3(II) (or orthorhombic perovskite) structure transforms to a new phase, which exhibits X-ray diffraction data that are indicative of a CaIrO3-type structure. The CaIrO3-type structure exhibited an orthorhombic symmetry (space group: Cmcm) that was stable at temperatures of 1200-2800 K and pressure of 96 GPa (the highest pressure used). Unambiguous assignment of such a structure requires experimental evidence for the presence of two Fe species. Based on the equation of state of gold, the phase boundary of the CaIrO3-type phase transformation was P (GPa)=59+0.0022×(T−1200) (K).  相似文献   

10.
X-ray diffraction and infrared spectroscopy of CaSO4 are conducted to pressures of 28 and 25 GPa, respectively. A reversible phase transition to the monoclinic monazite-structure occurs gradually between 2 and ∼5 GPa with a highly pressure-dependent volume change of ∼6-8%. A second-order fit of the X-ray data to the Birch-Murnaghan equation of state yields a bulk modulus (K) of 151.2 (±21.4) GPa for the high-pressure monoclinic phase. In the high-pressure infrared spectrum, the infrared-active asymmetric stretching and bending vibrations of the sulfate tetrahedra split at the phase transition, in accord with the results of factor group analysis. Additionally, the tetrahedral symmetric stretching vibration, which is weak in the anhydrite phase, becomes strongly resolved at the transition to the monazite structure. The infrared results indicate that the sulfate tetrahedra are more distorted in the monazite-structured phase than in anhydrite. Kinetic calculations indicate that the anhydrite to monazite transformation may generate the phase transition observed near 30 GPa under shock loading in CaSO4. Our results indicate that the anhydrite- and monazite-structured phases may be the only phases that occur under shock loading of CaSO4 to pressures in excess of 100 GPa.  相似文献   

11.
We investigated the behavior of the structure of titanium hydride (TiH2), an important compound in hydrogen storage research, at elevated temperatures (0-120 °C) and high pressures (1 bar-34 GPa). Temperature-induced changes of TiH2 as indicated in the alteration of the ambient X-ray demonstrated a cubic to tetragonal phase transition occurring at about 17 °C. The main focus of this study was to identify any pressure-induced structural transformations, including possible phase transitions, in TiH2. Synchrotron X-ray diffraction studies were carried out in situ (diamond anvil cell) in a compression sequence up to 34 GPa and in subsequent decompression to ambient pressure. The pressure evolution of the diffraction patterns revealed a cubic (Fm-3m) to tetragonal (I4/mmm) phase transition at 2.2 GPa. The high-pressure phase persisted up to 34 GPa. After decompression to ambient conditions the observed phase transition was completely reversible. A Birch-Murnaghan fit of the unit cell volume as a function of pressure yielded a zero-pressure bulk modulus K0=146(14) GPa, and its pressure derivative K0=6(1) for the high-pressure tetragonal phase of TiH2.  相似文献   

12.
Crystal structure and compressibility of potassium azide was investigated by in-situ synchrotron powder X-ray diffraction in a diamond anvil cell at room temperature up to 37.7 GPa. In the body-centered tetragonal (bct) phase, an anisotropic compressibility was observed with greater compressibility in the direction perpendicular to the plane containing N3 ions than directions within that plane. The bulk modulus of the bct phase was determined to be 18.6(7) GPa. A pressure-induced phase transition may occur at 15.5 GPa.  相似文献   

13.
Optical properties of solid methane (CH4) were studied at high pressure and room temperature using a diamond anvil cell. Reflectivity and transmission measurements were used to measure the refractive index to 288 GPa. Fabry-Perot interferometery was used to measure the sample thickness to 172 GPa. This data was fitted to the derived expression of thickness vs. pressure that was then used to calculate the thickness to 288 GPa. This in turn was combined with optical absorption experiments to obtain the absorption coefficient and hence the extinction coefficient k*. From combined reflection and absorption experiments the refractive index n=ns+ik* was obtained. The index of refraction and the ratio of molar refraction to molar volume showed a large increase between 208 and 288 GPa. This behavior indicated that a phase transformation of insulator-semiconductor might have occurred in solid CH4 by 288 GPa.  相似文献   

14.
High-pressure phase transition of Ta2NiO6 with the trirutile-type structure was investigated from the viewpoint of crystal chemistry. A new quenchable high-pressure phase was found in the pressure range higher than 7 GPa and 900°C. The high-pressure phase has an orthorhombic cell (a=4.797(1) Å, b=5.153(2) Å and c=14.85(1) Å and space group; Abm2), and it is more dense by 9.6% than the trirutile-structured phase. Infrared spectra of the trirutile-type phase and the high-pressure phase show that Ni2+ ions in the high-pressure phase are still in octahedral sites. The crystal structure of the high-pressure phase is considered as a cation-ordering trifluorite-type structure, which can be stabilized by a crystal field effect of Ni2+ ions.  相似文献   

15.
We present in this paper the results of an ab initio theoretical study within the local density approximation (LDA) to determine in rock-salt (B1), cesium chloride (B2), zinc-blende (B3), and tungsten carbide (WC) type structures, the structural, elastic constants, hardness properties and high-pressure phase of the noble metal carbide of ruthenium carbide (RuC).The ground state properties such as the equilibrium lattice constant, elastic constant, the bulk modulus, its pressure derivative, and the hardness in the four phases are determined and compared with available theoretical data. Only for the three phases B1, B3, and WC, is the RuC mechanically stable, while in the B2 phase it is unstable, but in B3 RuC is the most energetically favourable phase with the bulk modulus 263 GPa, and at sufficiently high pressure (Pt=19.2 GPa) the tungsten carbide (WC) structure would be favoured, where ReC-WC is meta-stable.The highest bulk modulus values in the B3, B2, and WC structures and the hardnesses of H(B3)=36.94 GPa, H(B1)=25.21 GPa, and H(WC)=25.30 GPa indicate that the RuC compound is a superhard material in B3, and is not superhard in B1 and WC structures compared with the H(diamond)=96 GPa.  相似文献   

16.
The enthalpy increment for a series of Ti–xTa (x=5, 10, 15, 20 mass%) alloys, having α(hcp)+β(bcc) two phase microstructure has been measured using inverse drop calorimetry in the temperature range 463–1257 K. The studies clearly revealed the occurrence of α→β diffusional phase transformation. Both the α→β transformation onset temperatures and the measured transformation enthalpy Δ0Htrαβ exhibit progressively lower values with increasing Ta content. It is found that the measured enthalpy in the transformation region is constituted of two principal contributions namely, (i) the enthalpy due to untransformed α and coexisting β phases and (ii) the transformation enthalpy due to αβ phase change. Since the fractional extent of αβ transformation varies continuously with temperature, the measured enthalpy variation in the transformation domain has been modeled using Kolmogorov–Johnson–Mehl–Avrami formalism for the diffusional transformation kinetics. The thermodynamic quantities for all the alloys have been derived.  相似文献   

17.
The melting curve of silicon has been determined up to 15 GPa using a miniaturized Kawai-type apparatus with second-stage cubic anvils made of X-ray transparent sintered diamond. Our results are in good agreement with the melting curve determined by electrical resistivity measurements [V.V. Brazhkin, A.G. Lyapin, S.V. Popova, R.N. Voloshin, Nonequilibrium phase transitions and amorphization in Si, Si/GaAs, Ge, and Ge/GaSb at the decompression of high-pressure phases, Phys. Rev. B 51 (1995) 7549] up to the phase I (diamond structure)—phase II (β-tin structure)—liquid triple point. The triple point of phase XI (orthorhombic, Imma)—phase V (simple hexagonal)—liquid has been constrained to be at 14.4(4) GPa and 1010(5) K. These results demonstrate that the combination of X-ray transparent anvils and monochromatic diffraction with area detectors offers a reliable technique to detect melting at high pressures in the multianvil press.  相似文献   

18.
We have successfully synthesized the α-FeSex binary tetragonal superconductors with nominal composition of FeSex (x=0.6-1.0) via conventional solid state reactions between Fe and Se sealed in quartz tubes. Fe and β-FeSe are the most commonly seen impurities in this binary system. A low-temperature annealing at 400 °C is found to be crucial to remove β-FeSe, which is the thermodynamic stable phase with hexagonal symmetry. For all the samples of FeSex, superconductivity is confirmed by magnetic measurements as well as resistivity measurements with their Tc at around 8 K. We noticed that their Tc does not vary with the different nominal Se amount. High-resolution synchrotron X-ray diffraction analysis revealed that the unit cell parameters of all these samples do not change within the error range, and their structure only tolerate the same very small amount of Se deficiency. Based on this study, we concluded that the α-FeSex superconductor only exist in a very narrow deficiency range.  相似文献   

19.
We theoretically studied the phase transformation, electronic and elastic properties of Ti3SiC2 ceramic by using the pseudopotential plane-wave method within the density functional theory. Our results demonstrate that there exists a structural phase transition from αTi3SiC2 to βTi3SiC2 under pressure up to 384 GPa, and αTi3SiC2 is the most stable phase at zero pressure. The calculated electronic band structure and density of states reveal the metallic behavior for the polymorphs of Ti3SiC2. The mechanical stability of αTi3SiC2 at zero pressure is confirmed by the elastic constants, and is analyzed in terms of electronic level. By analyzing the ratio between bulk and shear moduli, we conclude that αTi3SiC2 is brittle in nature.  相似文献   

20.
Observation of room-temperature ferromagnetism in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1−xNix)2O3 (0?x?0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at room-temperature. The highest saturation magnetization (0.453 μB/Fe+Ni ions) moment is reached in the sample with x=0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10 at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号