首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
A global asymptotic stability problem of cellular neural networks with delay is investigated. A new stability condition is presented based on the Lyapunov-Krasovskii method, which is dependent on the amount of delay. A result is given in the form of a linear matrix inequality, and the admitted upper bound of the delay can be easily obtained. The time delay dependent and independent results can be obtained, which include some previously published results. A numerical example is given to show the effectiveness of the main results.  相似文献   

2.
This paper is concerned with the passivity analysis for a class of discrete-time switched neural networks with various activation functions and mixed time delays. The mixed time delays under consideration include time-varying discrete delay and bounded distributed delay. By using the average dwell time approach and the discontinuous piecewise Lyapunov function technique, a novel delay-dependent sufficient condition for exponential stability of the switched neural networks with passivity is derived in terms of a set of linear matrix inequalities (LMIs). The obtained condition is not only dependent on the discrete delay bound, but also dependent on the distributed delay bound. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

3.
The problem of sampled-data synchronization of complex dynamical networks with distributed coupling delay and time-varying sampling is discussed in this paper. Based on the input delay approach and two integral inequalities, a stability criterion is proposed for the error dynamics, which is sampling-interval-dependent. Based on the given criterion, the design method of the desired sampled-data controllers is also obtained in terms of the solution to linear matrix inequalities, which can be checked effectively by using available software. An example is given to illustrate the effectiveness of the proposed result.  相似文献   

4.
This paper is concerned with the dissipativity problem of stochastic neural networks with time delay. A new stochastic integral inequality is first proposed. By utilizing the delay partitioning technique combined with the stochastic integral inequalities, some sufficient conditions ensuring mean-square exponential stability and dissipativity are derived. Some special cases are also considered. All the given results in this paper are not only dependent upon the time delay, but also upon the number of delay partitions. Finally, some numerical examples are provided to illustrate the effectiveness and improvement of the proposed criteria.  相似文献   

5.
Proportional delay, which is different from distributed delay, is a kind of unbounded delay. The proportional delay system as an important mathematical model often rises in some fields such as physics, biology systems, and control theory. In this paper, the uniqueness and the global asymptotic stability of equilibrium point of cellular neural networks with proportional delays are analyzed. By using matrix theory and constructing suitable Lyapunov functional, delay-dependent and delay-independent sufficient conditions are obtained for the global asymptotic stability of cellular neural networks with proportional delays. These results extend previous works on these issues for the delayed cellular neural networks. Two numerical examples and their simulation are given to illustrate the effectiveness of obtained results.  相似文献   

6.
黏弹性薄板蠕变屈曲的载荷-时间特性研究   总被引:9,自引:4,他引:9  
通过对黏弹性薄板压屈的稳定性分析,着重讨论了蠕变屈曲载荷-时间的特性,理论分析表明:黏弹性薄板蠕变屈曲与材料的力学性能密相关,屈曲载荷不像弹性薄板为一定值,而是与时间相关的;在一定载荷下,经过一段时间后出现延迟屈曲,相关的实验研究也证实这一重要结论;这种延迟失稳问题在工程中有其重要的意义。  相似文献   

7.
In this paper, the incremental harmonic balance method is employed to solve the periodic solution that a vibration active control system with double time delays generates, and the stability analysis of which is achieved by the Poincare theorem. The system stability regions can be obtained in view of time delay and feedback gain, the variation of which is also studied. It turns out that along with the increase of time delay, the active control system is not always from stable to unstable, and the system can be from stable to unstable state, whereas the system can be from unstable to stable state. The extent that the two times delays impact on the system stability region is mainly related to the relative magnitude of the two feedback gains. The system can maintain the stable state under the condition of the well-matched feedback gains. The results can provide evidence to design the control strategy of time-delayed feedback.  相似文献   

8.
The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.  相似文献   

9.
The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering the non-parallelism effect, the parabolized stability equation (PSE) method lacks local characteristic of stability analysis. In this paper, a local stability analysis method considering non-parallelism is proposed, termed as EPSE since it may be considered as an expansion of the PSE method. The EPSE considers variation of the shape function in the streamwise direction. Its local characteristic is convenient for stability analysis. This paper uses the EPSE in a strong non-parallel flow and mode exchange problem. The results agree well with the PSE and the direct numerical simulation (DNS). In addition, it is found that the growth rate is related to the normalized method in the non-parallel flow. Different results can be obtained using different normalized methods. Therefore, the normalized method must be consistent.  相似文献   

10.
Yu Zhang 《Nonlinear dynamics》2014,75(1-2):101-111
In this paper, stochastic stability for a class of discrete-time Markovian jump delay systems with delayed impulses and partly unknown transition probabilities is investigated. Some new results are given based on stochastic Lyapunov functionals. It is shown that an unstable discrete-time Markovian jump delay system can be stochastically stable under certain stabilizing impulses. It is also shown that, when the nearest impulsive time interval is appropriately large, a stable discrete-time Markovian jump delay system can retain its stochastic stability property even with destabilizing impulses. Numerical examples together with their simulations are provided to demonstrate the effectiveness of the derived results.  相似文献   

11.
Synchronization of master–slave chaotic neural networks are well studied through asymptotic and exponential stability of error dynamics. Besides qualitative properties of error dynamics, there is a need to quantify the error in real-time experiments especially in secure communication system. In this article, we focused on quantitative analysis of error dynamics by finding the exact analytical error bound for the synchronization of delayed neural networks. Using the Halanay inequality, the error bound is going to be obtained in terms of exponential of given system parameters and delay. The time-varying coupling delay has been considered in the neural networks which does not require any restrictive condition on the derivative of the delay. The proposed method can also be applied to find error bound for state estimation problem. The analytical synchronization bound has been corroborated by two examples.  相似文献   

12.
A reproducing kernel collocation method based on strong formulation is introduced for transient dynamics. To study the stability property of this method, an algorithm based on the von Neumann hypothesis is proposed to predict the critical time step. A numerical test is conducted to validate the algorithm. The numerical critical time step and the predicted critical time step are in good agreement. The results are compared with those obtained based on the radial basis collocation method, and they are in good agreement. Several important conclusions for choosing a proper support size of the reproducing kernel shape function are given to improve the stability condition.  相似文献   

13.
A class of Hopfield neural network with time-varying delays and impulsive effects is concerned. By applying the piecewise continuous vector Lyapunov function some sufficient conditions were obtained to ensure the global exponential stability of impulsive delay neural networks. An example and its simulation are given to illustrate the effectiveness of the results.  相似文献   

14.
Summary Argon-bromine counters are compared with argon-alcohol counters. The point is stressed that their properties change when the charge developed in the counter becomes equal to or greater than the charge originally present at the wire. The so-called oscillations are investigated and partially explained as well as the delay in the build-up of a pulse, this delay being dependent on the overvoltage. A clear-cut picture of the mechanism of these counters can not yet be given.  相似文献   

15.
We consider non-linear viscous shallow water models with varying topography, extra friction terms and capillary effects, in a two-dimensional framework. Water-depth dependent laminar and turbulent friction coefficients issued from an asymptotic analysis of the three-dimensional free-surface Navier–Stokes equations are considered here. A new proof of stability for global weak solutions is given in periodic domain Ω = T2, adapting the method introduced by J. Simon in [15] for the non-homogeneous Navier–Stokes equations. Existence results for such solutions can be obtained from this stability analysis.  相似文献   

16.
The paper is concerned with the state estimation problem for a class of neural networks with Markovian jumping parameters. The neural networks have a finite number of modes and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time-delays, the dynamics of the estimation error are globally stable in the mean square. A new type of Markovian jumping matrix P i is introduced in this paper. The discrete delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI conditions.  相似文献   

17.
This paper is devoted to the analysis of a nutrient-plankton model with delayed nutrient cycling. Firstly, stability and Hopf bifurcation of the positive equilibrium are given, and the direction and stability of Hopf bifurcation are also studied. We show that delay, which is considered in the decomposition of dead phytoplankton, can induce stability switches, such that the positive equilibrium switches from stability to instability, to stability again and so on. One can observe that the influence of delay on the system dynamics is essential. Then, we prove that there exists at least one positive periodic solution as the time delay varies in some regions using the global Hopf bifurcation result of Wu (1998, Trans Am Math Soc 350:4799–4838) for functional differential equations. Furthermore, the impact of input rate of nutrient is discussed along with numerical results, and the role of delay in the nutrient cycling is interpreted ecologically. Finally, several groups of illustrations are performed to justify analytical findings.  相似文献   

18.
The issue of state estimation is studied for a class of neural networks with norm-bounded parameter uncertainties and time-varying delay. Some new linear matrix inequality (LMI) representations of delay-dependent stability criteria are presented for the existence of the desired estimator for all admissible parametric uncertainties. The proposed method is based on the S-procedure and an extended integral inequality which can be deduced from the well-known Leibniz–Newton formula and Moon’s inequality. The results extend some models reported in the literature and improve conservativeness of those in the case that the derivative of the time-varying delay is assumed to be less than one. Two numerical examples are given to show the effectiveness and superiority of the results.  相似文献   

19.
In this paper, a nonautonomous impulsive neutral-type neural network with delays is considered. By establishing a singular impulsive delay differential inequality and employing contraction mapping principle, several sufficient conditions ensuring the existence and global exponential stability of the periodic solution for the impulsive neutral-type neural network with delays are obtained. Our results can extend and improve earlier publications. An example is given to illustrate the theory.  相似文献   

20.
This paper details a procedure to determine lower bounds on the size of representative volume elements (RVEs) by which the size of the RVE can be quantified objectively for random heterogeneous materials. Here, attention is focused on granular materials with various distributions of inclusion size and volume fraction of inclusions. An extensive analysis of the RVE size dependence on the various parameters is performed. Both deterministic and stochastic parameters are analysed. Also, the effects of loading mode and the parameter of interest are studied. As the RVE size is a function of the material, some material properties such as Young's modulus and Poisson's ratio are analysed as factors that influence the RVE size. The lower bound of RVE size is found as a function of the stochastically distributed volume fraction of inclusions; thus the stochastic stability of the obtained results is assessed. To this end a newly defined concept of stochastic stability (DH-stability) is introduced by which stochastic effects can be included in the stability considerations. DH-stability can be seen as an extension of classical Lyapunov stability. As is shown, DH-stability provides an objective tool to establish the lower bound nature of RVEs for fluctuations in stochastic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号