首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The nucleophilic hydrodefluorination of C3F7OCFCF2 with the complex hydrides Li[AlH4], Li[BH4] or Na[BH4] proceeded non-stereoselectively and was accompanied by the formation of either cis- and trans-C3F7OCHCFH and/or C3F7OCHFCF2H. The reaction of C3F7OCFCF2 with PBu3 followed by treatment with BF3·OMe2 or BF3·OEt2 yielded [C3F7OCFCFPBu3] [BF4] (cis and trans) and, probably, [trans-Bu3PCFCFPBu3] [BF4]2. The hydrolysis of the latter with pure water proceeded quickly while the former isomeric mixture formed the isomeric olefins C3F7OCFCFH slowly. The usage of aqueous NaOH instead of water produced mainly trans-CHFCHF. The metallation of C3F7OCFCFH (cis:trans=45:55) to C3F7OCFCFLi and its subsequent reaction with B(OMe)3 and K[HF2] gave the salt K[C3F7OCFCFBF3] in a different cis to trans ratio (25:75) with satisfactory yield.  相似文献   

2.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

3.
A promising approach to the unknown type of [Ar′(Ar)IF2]X salts is offered. x-FC6H4IF4 (x=2, 3, 4) reacts with C6F5BF2 in CH2Cl2 and forms [x-FC6H4(C6F5)IF2][BF4] salts in good yields. For [4-FC6H4(C6F5)IF2][BF4] the fluoro-oxidizer property is shown in reactions with weakly reducing agents like E(C6F5)3 (E=P, As, Sb, Bi) and ArI (Ar=4-FC6H4, C6F5). The fluorine/aryl substitution method is also applied to the synthesis of [(4-FC6H4)2IF2][BF4], an example with two identical aryl groups in the difluoroiodonium(V) moiety.  相似文献   

4.
Bromonium salts [(RF)2Br]Y with perfluorinated groups RFC6F5, CF3CFCF, C2F5CFCF, and CF3C≡C were isolated from reactions of BrF3 with RFBF2 in weakly coordinating solvents (wcs) like CF3CH2CHF2 (PFP) or CF3CH2CF2CH3 (PFB) in 30-90% yields. C6F5BF2 formed independent of the stoichiometry only [(C6F5)2Br][BF4]. 1:2 reactions of BrF3 and silanes C6F5SiY3 (Y = F, Me) ended with different products - C6F5BrF2 or [(C6F5)2Br][SiF5] - as pure individuals, depending on Y and on the reaction temperature (Y = F). With C6F5SiF3 at ≥−30 °C [(C6F5)2Br][SiF5] resulted in 92% yield whereas the reaction with less Lewis acidic C6F5SiMe3 only led to C6F5BrF2 (58%). The interaction of K[C6F5BF3] with BrF3 or [BrF2][SbF6] in anhydrous HF gave [(C6F5)2Br][SbF6]. Attempts to obtain a bis(perfluoroalkyl)bromonium salt by reactions of C6F13BF2 with BrF3 or of K[C6F13BF3] with [BrF2][SbF6] failed. The 3:2 reactions of BrF3 with (C6F5)3B in CH2Cl2 gave [(C6F5)2Br][(C6F5)nBF4−n] salts (n = 0-3). The mixture of anions could be converted to pure [BF4] salts by treatment with BF3·base.  相似文献   

5.
The hydrodeboration of the (fluoroorgano)trifluoroborates K [RFBF3] [RF = C6F5, XCF=CF (X = F, cis‐ and trans‐Cl, C3F7O, cis‐C2F5, trans‐C4F9, ‐C4H9) and C6F13] and of the organotrifluoroborates K [RBF3] (R = C6H5, cis‐ and trans‐C4H9CH=CH, C4H9 and C8H17) with CH3CO2H (100 %), CF3CO2H (100 %), aqueous HF and anhydrous HF was investigated. In the alkenyltrifluoroborates K [R'CF=CFBF3] the formal replacement of BF3 by a proton occurred stereospecifically under retention of the configuration. The 19F NMR spectra of K [RFBF3] in acids indicate strong interactions of the BF3 group with protons or acid molecules.  相似文献   

6.
The effect of N-heterocyclic carbene (NHC) ligands on the catalytic activity of in situ generated palladium complexes in the model cross-coupling reaction of K[C6F5BF3] with 4-FC6H4I was studied. Based on the obtained results, a series of pentafluorobiphenyls C6F5C6H4X were prepared from K[C6F5BF3] and XC6H4I or 4-CF3C6H4Br in high yields under aerobic conditions.  相似文献   

7.
Li[C6F5B(OMe)3], Li[C6HF4B(OMe)3] (all three isomers) and Li[3,4,5-C6H2F3B(OMe)3] are the first examples of polyfluorophenyltrimethoxyborate salts which have been applied as reagents to Pd-catalysed cross-coupling reactions. A series of polyfluorinated biphenyls C6H5−nFn-C6H4F-4′ were obtained from Li[C6H5−nFnB(OMe)3] and the model substrate 4-FC6H4I in the presence of Pd catalysts. The influence of the number and the position of fluorine atoms in the polyfluorophenyltrimethoxyborate salts on the reactivity in the coupling reaction was elucidated.  相似文献   

8.
Radical polyaddition of bis(α-trifluoromethyl-β,β-difluorovinyl) terephthalate [CF2C(CF3)OCOC6H4COOC(CF3)CF2] (BFP) with 18-crown-6 to produce fluorinated polymer bearing crown ether moiety in main chain is described. Prior to polyaddition, the model reaction of 2-benzoxypentafluoropropene [CF2C(CF3)OCOC6H5] (BPFP) with 18-crown-6 was investigated to afford suitable reactions condition for polyaddition. The polyaddition of BFP with 18-crown-6 yielded a soluble polymer bearing Mn=5.5×104 with unimodal molecular weight distribution after purification by reprecipitation with cold ethanol.  相似文献   

9.
The aimed introduction of the polyfluoroorgano groups (4-C5F4N), C6F13C2H4, and C2F5 into methoxy group-containing boron electrophiles is reported. The new compounds obtained after transformations K[(4-C5F4N)BF3], (4-C5F4N)BF2, K[C6F13C2H4BF3], C6F13C2H4BF2, K[(C2F5)2B(OMe)2], and K[(C2F5)2BF2] were isolated and characterised. Additionally some of their precursors as there are Li(4-C5F4N), Li[(4-C5F4N)B(OMe)3], (4-C5F4N)B(OH)2 and the by-products Li[(4-C5F4N)2B(OMe)2], (4-C5F4N)2BOH, and K[(4-C5F4N)2BF2] are described. The usefulness of polyfluoroorganodifluoroboranes for introducing polyfluoroorgano groups into hypervalent FEF bonds is demonstrated by the synthesis of [C6F5(4-C5F4N)I][BF4] and [p-FC6H4(trans-CF3CFCF)I][BF4].  相似文献   

10.
Fluorinated organodifluoroboranes RfBF2 are in general suitable reagents to transform XeF2 and RIF2 into the corresponding onium tetrafluoroborate salts [RfXe][BF4] and [R(Rf)I][BF4], respectively. (4-C5F4N)BF2 and trans-CF3CFCFBF2 which represent boranes of high acidity form no Xe-C onium salts in reactions with XeF2 but give the desired iodonium salts with RIF2 (R = C6F5, o-, m-, p-C6FH4). The reaction of (4-C5F4N)BF2 with XeF2 ends with a XeF2-borane adduct. C6F5Xe(4-C5F4N), the first Xe-(4-C5F4N) compound, was obtained when C6F5XeF was reacted with Cd(4-C5F4N)2. We describe the synthesis of (4-C5F4N)IF2 and reactions of (4-C5F4N)IF2 and C6F5IF2 with (4-C5F4N)BF2. Analogous to [(4-C5F4N)2I][BF4] and [C6F5(4-C5F4N)I][BF4] aryl(perfluoroalkenyl)iodonium salts [R(R′)I][BF4] were obtained from RIF2 (R = C6F5, o-, m-, p-C6FH4) and R′BF2 (R′ = trans-CF3CFCF, CF2CF). The gas phase fluoride affinities pF of selected fluoroorganodifluoroboranes RfBF2 and their hydrocarbon analogs are calculated (B3LYP/6-31+G*) and discussed with respect to their potential to introduce Rf-groups into hypervalent EF2 bonds. Four aspects which influence the transformation of hypervalent EF2 bonds (E = Xe, R′I) under the action of Lewis acidic reagents RAFn−1 (A = B, P; n = 3, 5) into the corresponding [RE][AFn+1] salts are presented and the important role of the acidity is emphasized. Fluoride affinities may help to plan the introduction of organo groups into EF2 moieties and to expand the types of acidic reagents. Thus C6H5PF4 with a pF value comparable to that of RfBF2 compounds is able to introduce the C6H5 group into RIF2 (R = C6F5, p-C6FH4).  相似文献   

11.
The potassium fluoroborates K[RCF=CFBF3] (R = F, Cl (cis‐/trans‐mixture), trans‐C4F9, cis‐C2F5, cis‐C6F13, trans‐C4H9, trans‐C6H5) were prepared by fluoridation (methoxide‐fluoride substitution with K[HF2]) of RCF=CFB(OMe)2 and Li[RCF=CFB(OMe)3] which were obtained from RCF=CFLi and B(OMe)3. The K[RCF=CFBF3] salts were characterized by their 1H, 11B, 19F NMR and IR spectra.  相似文献   

12.
Phosphoranides are interesting hypervalent species which serve as model compounds for intermediates or transition states in nucleophilic substitution reactions at trivalent phosphorus substrates. Herein, the syntheses and properties of stable trifluoromethylphosphoranide salts are reported. [K(18-crown-6)][P(CF3)4], [K(18-crown-6)][P(CF3)3F], and [NMe4][P(CF3)2F2] were obtained by treatment of trivalent precursors with sources of CF3 or F units. These [P(CF3)4-nFn] (n=0–2) salts exhibit fluorinating (n=1–2) or trifluoromethylating (n=0) properties, which is disclosed by studying their reactivity towards selected electrophiles. The solid-state structures of [K(18-crown-6)][P(CF3)4] and [K(18-crown-6)][P(CF3)3F] are ascertained by single crystal X-ray crystallography. The dynamics of these compounds are investigated by variable temperature NMR spectroscopy.  相似文献   

13.
The reaction of alkynyldifluoroboranes RC≡CBF2 (R = (CH3)3C, CF3, (CF3)2CF) with organyliodine difluoride R′IF2 bearing electron‐withdrawing polyfluoroorganyl groups R′ = C6F5, (CF3)2CFCF=CF, C4F9, and CF3CH2 leads to the corresponding alkynyl(organyl)iodonium salts [(RC≡C)(R′)I][BF4]. This approach uses a widely applicable method as demonstrated for a representative series of polyfluorinated aryl‐, alkenyl‐, and alkyliodine difluorides. Generally, these syntheses proceed with good yields and deliver pure iodonium salts. The distinct electrophilic nature of their [(RC≡C)(R′)I]+ cations is deduced from multinuclear magnetic resonance data. Within the series of new iodonium salts [CF3C≡C(C4F9)I][BF4] is an intrinsic unstable one and decomposed forming CF3C≡CI and C4F10.  相似文献   

14.
Two routes to RFIF6 compounds were investigated: (a) the substitution of F by RF in IF7 and (b) the fluorine addition to iodine in RFIF4 precursors. For route (a) the reagents C6F5SiMe3, C6F5SiF3, [NMe4][C6F5SiF4], C6F5BF2, and 1,4-C6F4(BF2)2 were tested. C6F5IF4 and CF3CH2IF4 were used in route (b) and treated with the fluoro-oxidizers IF7, [O2][SbF6]/KF, and K2[NiF6]/KF. The observed sidestep reactions in case of routes (a) and (b) are discussed. Interaction of C6F5SiX3 (X = Me, F), C6F5BF2, 1,4-C6F4(BF2)2 with IF7 gave exclusively the corresponding ring fluorination products, perfluorinated cyclohexadiene and cyclohexene derivatives, whereas [NMe4][C6F5SiF4] and IF7 formed mixtures of C6FnIF4 and C6FnH compounds (n = 7 and 9). CF3CH2IF4 was not reactive towards the fluoro-oxidizer IF7, whereas C6F5IF4 formed C6FnIF4 compounds (n = 7 and 9). C6F5IF4 and CF3CH2IF4 were inert towards [O2][SbF6] in anhydrous HF. CF3CH2IF4 underwent C-H fluorination and C-I bond cleavage when treated with K2[NiF6]/KF in HF. The fluorine addition property of IF7 was independently demonstrated in case of perfluorohexenes. C4F9CFCF2 and IF7 underwent oxidative fluorine addition at −30 °C, and the isomers (CF3)2CFCFCFCF3 (cis and trans) formed very slowly perfluoroisohexanes even at 25 °C. The compatibility of IF7 and selected organic solvents was investigated. The polyfluoroalkanes CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB), and C4F9Br are inert towards iodine heptafluoride at 25 °C while CF3CH2Br was slowly converted to CF3CH2F. Especially PFP and PFB are new suitable organic solvents for IF7.  相似文献   

15.
Radical polyaddition of bis(α-trifluoromethyl-β,β-difluorovinyl) terephthalate [CF2C(CF3)OCOC6H4COOC(CF3)CF2] (BFP) with diformylalkanes to produce fluorinated polymer bearing ketone-carbonyl groups in main chain is described. The radical additions of hexanal, pentanal and benzaldehyde with 2-benzoxypentafluoropropene [CF2C(CF3)OCOC6H5] were examined as model reactions to yield the corresponding addition product with hexanal and pentanal in high yields, and no product with benzaldehyde. The addition of acyl and hydrogen was found to take place to perfluoroisopropenyl group. The results of the model reactions suggested that the reaction might be applicable to polyaddition to produce polymers with diformylalkanes. The results of polyaddition of BFP with glutaraldehyde under the emulsion polymerization condition showed that the polymer of Mn=4.8×103 was obtained in fairly high yields. This might be a novel preparation method of polymers bearing fluorinated polyketone structure.  相似文献   

16.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

17.
Neutral polyfluorophenyl complexes of the type RAuL and RAuL-LAuR and anionic complexes of the type [AuR2]? (R = 2,3,5,6-C6F4H, 2,4,6-C,F3H2, 3,6-C6F2H3, 4-C6 FH4 or 3-CF3C,H4) are obtained by the reaction of ClAuL (L = PPh3, P(cyclohexyl)3, AsPh3 or tetrahydrothiophen; L-L = Ph2PCH2PPh2 or Ph2PCH2CH2PPPh2) with an organolithium derivative and/or the replacement of the initial ligands L by other mono- or bi-dentate ligands.The outcome of the reaction of [AuR2]? with [Au(PCy3)2]+ (Cy = cyclohexyl), depends on the nature of the ligand R; thus with R = 3,6-C6,F2H3 the product is [Au(PCy3)2][AuR2], while with R = 2,4,6-C6F3H2, the product is [Au(PCy3)(2,4,6-C6F3H2)].  相似文献   

18.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

19.
Preparation and Characterization of Cationic η2-1-Butene and Acetonitrile Complexes The reaction of the species η5-C5H5M(CO)n-σ-C4H7 (M = Fe, Mo, W; n = 2, 3) with (C6H5)3CBF4 yielded – instead of the expected cationic butadiene complexes of the type [η5-CpM(CO)n?14-C4H6][BF4], which would have been formed in case of hydride cleavage – compounds of the type [η5-CpM(CO)n η2-C4H8][BF4], which were formed by protonation of the σ-C4H7 ligands. The reaction proceeded quantitatively. The BF4? anion can be substituted by other anions, such as ClO4?, B(C6H5)4?, PF4?, and [Cr(SCN)4(NH3)2]? in the complexes obtained. The mechanism of the reaction leading to the η2-bonded 1-butene complexes was determined by isotope experiments. In trying to recrystallize the butene complexes from acetonitrile the cationic complexes [η5-C5H5 Fe(CO)2CH3CN]BF4 and [η5-C5H5 M(CO)3CH3CN]BF4 were observed; the X-ray structure analysis of the former is reported.  相似文献   

20.
The ditopic germanium complex FGe(NIPr)2Ge[BF4] ( 3 [BF4]; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) is prepared by the reaction of the amino(imino)germylene (Me3Si)2NGeNIPr ( 1 ) with BF3?OEt2. This monocation is converted into the germylene‐germyliumylidene 3 [BArF4] [ArF=3,5‐(CF3)2‐C6H3] by treatment with Na[BArF4]. The tetrafluoroborate salt 3 [BF4] reacts with 2 equivalents of Me3SiOTf to give the novel complex (OTf)(GeNIPr)2[OTf] ( 4 [OTf]), which affords 4 [BArF4] and 4 [Al(ORF)4] [RF=C(CF3)3] after anion exchange with Na[BArF4] or Ag[Al(ORF)4], respectively. The computational, as well as crystallographic study, reveals that 4 + has significant bis(germyliumylidene) dication character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号