首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A review of all known compounds of the type [Mn(L)m](AF6)n (M is a metal in the oxidation state n; A = P, As, Sb and Bi; L = HF, AsF3 and XeF2) is given with the emphasis on the compounds isolated and characterized by our group. The synthetic routes for the preparation of these compounds are given together with a brief analysis of their structures. In the case of L = XeF2 the influence of the properties of the cation and the anion on the structural diversity of these coordination compounds is discussed. A brief analysis of their Raman spectra is also given.  相似文献   

2.
[Cu(XeF2)6](SbF6)2 crystallizes in the rhombohedral symmetry with a = 1003.6(2) pm, c = 2246.5(12) pm at 200 K and Z = 3, space group (No. 148). [Zn(XeF2)6](SbF6)2 is isostructural to [Cu(XeF2)6](SbF6)2 with a = 1007(2) pm and c = 2243(6) pm. The structures are characterized by isolated homoleptic [M(XeF2)6]2+ (M = Cu, Zn) cations and of [SbF6] octahedra.Reactions of M(SbF6)2 (M = Cu, Zn) with XeF2 in anhydrous hydrogen fluoride (aHF) and reactions of MF2 with Xe2F3SbF6 in aHF always yield a mixture of [M(XeF2)6](SbF6)2, Xe2F3SbF6 and MF2.  相似文献   

3.
A new class of coordination compounds of the type [Mn+(L)p](AF6)n and [Mn+(L)r](BF4)n, where M is Mg, Ca, Sr, Ba, Cd, Pb, lanthanides, A is P, As, Sb, Bi and L is XeF2, XeF4, XeF6, KrF2, was studied. A review of all known coordination compounds with L is XeF2 is given: (a) synthetic routes for the preparation of these compounds; (b) analysis of their crystal structures (molecular, dimer, chain, double chain, layer, strongly interconnected double layers and three-dimensional network); (c) the influence of the ligand XeF2 (small formula volume, linear, semi-ionic, charge of −0.5e on each F ligand); (d) the influence of the central metal ion; (e) the influence of the anions: AF6 and BF4 (the formula volume, Lewis basicity). On the basis of all properties of the metal ions, ligand and anions the obtained variety of the structures is analyzed.  相似文献   

4.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

5.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

6.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

7.
[Mg(HF)2](SbF6)2 and [Ca(HF)2](SbF6)2 monocrystals were grown from the corresponding hexafluoroantimonates(V) dissolved in anhydrous hydrogen fluoride. [Mg(HF)2](SbF6)2 crystallizes in the space group Pnma (no. 62) with a=1249.1(4) pm, b=1230.2(4) pm, c=699.1(2) pm, V=1.0742(6) nm3, Z=4. Magnesium is octahedrally coordinated by six fluorine atoms from which two belong to two HF molecules. The structure can be represented by alternating rows of magnesium and antimony atoms running parallel to the c-axis. Magnesium atoms are connected by cis bridging Sb(2)F6 units along the a-axis and by trans bridging Sb(1)F6 units along the b-axis. In this way a three-dimensional network is formed.[Ca(HF)2](SbF6)2 crystallizes in the space group P21/n (no. 14) with a=935.2(3) pm, b=1088.7(3) pm, c=1104.8(3) pm, β=106.697(5)°, V=1.0774(5) nm3, Z=4. The coordination sphere around the calcium atom consists of eight fluorine atoms which define the vertices of an Archimedean antiprism. The two HF molecules directly coordinate the calcium atom and their fluorine atoms are placed in the corners of different square faces of the Archimedean antiprism. The Ca-F(HF) distances are shorter than the Ca-F(Sb) distances. The Sb(1)F6 and Sb(2)F6 groups have four equatorial bridging fluorine atoms, while the Sb(3)F6 groups have only two bridging trans F ligands. The Ca atoms in the [−1,0,1] plane are connected by equatorial F ligands of Sb(1)F6 and Sb(2)F6 units, forming a [Ca(SbF6)+]n layer. These layers are connected by trans bridging Sb(3)F6 groups. HF molecules occupy the space between these layers and additionally contribute to the connection between the layers by hydrogen bonding.  相似文献   

8.
Ca(AsF3)(AsF6)2 was prepared by the reaction of CaF2 with excess AsF5 in AsF3 solvent. The compound crystallizes in an orthorhombic crystal system, space group Pnma, with a =1034.9(4) pm, b = 1001.7(4) pm and c = 1088.4(4) pm, V = 1.1283(8) nm3 and Z = 4. Calcium is coordinated to eight fluorine atoms, with six fluorine atoms located at the corners of a regular trigonal prism originating from six AsF6 units. Two rectangular faces of the trigonal prism are capped by fluorine atoms from two fluorine bridged AsF3 molecules. For the first time, AsF3 is shown to serve as a bridging ligand to two metal cations, with bridging distances of F(AsF3)-Ca = 241.1 and 243.2 pm. It was found, again for the first time, that the bridging As-F distances are shorter (172.4 and 173.1 pm) than the terminal As-F distance (184.5 pm). The Raman spectrum shows vibrational modes that are readily assigned to AsF3 and AsF6.  相似文献   

9.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

10.
Eight types of new CO2-soluble or CO2-philic ruthenium(II) and cobalt(II) polypyridine complexes, namely, [M(F84OPh)3](BArF)2, [M(F44OPh)3](BArF)2, [M(F62Ph)3](BArF)2, and [M(F62O)3](BArF)2 (M = Ru or Co, BArF: tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), were prepared from bipyridine derivatives bearing highly fluorinated alkyl chains and applied to the photoreduction of liq. CO2 under a high pressure of 6.8 MPa at 35 °C. All these complexes have higher philicity toward liq. CO2 than the corresponding complexes with PF6− as the counteranion. Using the Ru(II)-Co(II) systems of [M(F44OPh)3](BArF)2 and [M(F62O)3](BArF)2, direct photoreduction of CO2 was achieved without the use of any organic solvent.  相似文献   

11.
The reactions of the fluoride-ion donor, XeF6, with the fluoride-ion acceptors, M′OF4 (M′=Cr, Mo, W), yield [XeF5]+ and [Xe2F11]+ salts of [M′OF5] and [M2O2F9] (M=Mo, W). Xenon hexafluoride and MOF4 react in anhydrous hydrogen fluoride (aHF) to give equilibrium mixtures of [Xe2F11]+, [XeF5]+, [(HF)nF], [MOF5], and [M2O2F9] from which the title salts were crystallized. The [XeF5][CrOF5] and [Xe2F11][CrOF5] salts could not be formed from mixtures of CrOF4 and XeF6 in aHF at low temperature (LT) owing to the low fluoride-ion affinity of CrOF4, but yielded [XeF5][HF2]⋅CrOF4 instead. In contrast, MoOF4 and WOF4 are sufficiently Lewis acidic to abstract F ion from [(HF)nF] in aHF to give the [MOF5] and [M2O2F9] salts of [XeF5]+ and [Xe2F11]+. To circumvent [(HF)nF] formation, [Xe2F11][CrOF5] was synthesized at LT in CF2ClCF2Cl solvent. The salts were characterized by LT Raman spectroscopy and LT single-crystal X-ray diffraction, which provided the first X-ray crystal structure of the [CrOF5] anion and high-precision geometric parameters for [MOF5] and [M2O2F9]. Hydrolysis of [Xe2F11][WOF5] by water contaminant in HF solvent yielded [XeF5][WOF5]⋅XeOF4. Quantum-chemical calculations were carried out for M′OF4, [M′OF5], [M′2O2F9], {[Xe2F11][CrOF5]}2, [Xe2F11][MOF5], and {[XeF5][M2O2F9]}2 to obtain their gas-phase geometries and vibrational frequencies to aid in their vibrational mode assignments and to assess chemical bonding.  相似文献   

12.
Reaction of [Ru(Cp)(CH3CN)3](PF6) with P(o-tolyl)3 affords [Ru(Cp){(η6-o-tolyl)P(o-tolyl)2}](PF6) (4) in which the P-atom is not coordinated to the metal. The solid-state structure of 4 has been determined. A related reaction with P(p-tolyl)3 reveals a small quantity [Ru(Cp){(η6-p-tolyl)P(o-tolyl)2}](PF6), in solution, but mostly the expected bis-phosphine complex. Reaction of the Ru(IV) dication, [Ru(Cp)(η3-PhCHCHCH2)(DMF)2](PF6)2, with P(o-tolyl)3 gives a mixture of the phosphonium salt, C6H5CHCHCH2P(o-tolyl)3 (9) and the dication [Ru(Cp) (η6-C6H5CHCHCH2P(o-tolyl)3)](PF6)2 (10). Salt 9 forms via attack of the P-atom on the allyl ligand. The latter product results from complexation of 9 via the phenyl group of the former allyl ligand. It would seem that the sterically demanding P(o-tolyl)3 ligand is not readily compatible with the Ru(Cp) fragment, in either the +2 or +4 oxidation state. Detailed NMR studies are reported.  相似文献   

13.
The compounds, Cd(BF4)(TaF6) and Cd(BF4)(BiF6), have been synthesized and characterized by single-crystal X-ray diffraction and Raman spectroscopy. Both isostructural compounds crystallize in the monoclinic P21/c space group with a = 8.2700(6) Å, b = 9.3691(6) Å, c = 8.8896(7) Å, β = 94.196(3)°, V = 686.94(9) Å3 for Cd(BF4)(TaF6) and a = 8.3412(8) Å, b = 9.4062(8) Å, c = 8.9570(7) Å, β = 93.320(5)°, V = 701.58(11) Å3 for Cd(BF4)(BiF6). Eight fluorine atoms (4 BF4 + 4 AF6) form a surrounding around the cadmium atom in the shape of distorted square antiprism. These compounds are not isostructural with mixed-anion analogues of Ca, Sr, Ba and Pb studied earlier.  相似文献   

14.
A novel red light-emitting material, Ca3Al2O6:Eu3+, which is the first example found in the Ca3Al2O6 host, was prepared by calcination of a layered double hydroxide precursor at 1350 °C. The precursor, [Ca2.9−xAl2Eux(OH)9.8](NO3)2+x·2.5H2O, was prepared by coprecipitation of metal nitrates with sodium hydroxide. The material is a loose powder composed of irregular particles formed from aggregation of particles of a few nanometers, as shown in scanning electron microscope (SEM) images. It was found that the photoluminescence intensity reached the maximum when the calcination temperature was 1350 °C and the concentration of Eu3+ was 1.0%. The material emits bright red emission at 614 nm under a radiation of λ=250 nm.  相似文献   

15.
The reactions of elemental nickel and tellurium and of ZnTe with excess AsF5 in liquid SO2 yield [M(SO2)6](Te6)[AsF6]6 (M = Ni, Zn) as orange crystals. The crystal structure determinations (triclinic, , M = Ni: a = 1632.59(2), b = 1795.06(1), c = 1822.97(2) pm, α = 119.11(4), β = 90.78(4), γ = 106.28(4)°, V = 4408.24(8)·106pm3, Z = 4) show the two compounds to be isotypic. The structures are made up of discrete [M(SO2)6]2+ complexes, Te64+ clusters and octahedral [AsF6]? ions. In the [M(SO2)6]2+ complexes the metal ions are surrounded octahedrally by six SO2 molecules bound via the O atoms. The Te64+ polycations are of trigonal prismatic shape with short Te–Te bonds within the triangular faces (270 pm) and long Te–Te bonds along the edges parallel to the pseudo C3 axes of the prisms (312 pm). The arrangement of the ions is related to the Li3Bi structure type. [M(SO2)6]2+ complexes and Te64+ polycations together form a distorted cubic closest packing with all tetrahedral and octahedral interstices filled by [AsF6]? ions. The analogous reaction starting from CdTe did not yield a compound containing simultaneously [Cd(SO2)n]2+ complexes and tellurium polycations but instead Te6[AsF6]4 · 2 SO2 besides [Cd(SO2)2][AsF6]2 were obtained. It crystallizes isotypically to [Mn(SO2)2][AsF6]2 (Mews, Zemva, 2001) (orthorhombic, Fdd2, a = 1534.96(3), b = 1812.89(3), c = 892.28(3) pm, V = 2483·106 pm3, Z = 4).  相似文献   

16.
Mn(SbF6)2 was prepared from MnF2 and SbF5 in aHF (anhydrous HF) and single crystals were obtained from the respective solution. The compound crystallises in the triclinic space group P 1 (No. 2) with a = 517.3(2) pm, b = 554.9(2) pm, c = 888.2(2) pm, α = 73.98(3)°, β = 89.17(2)°, γ = 62.54(2)° and Z = 1. MnGeF6 was prepared from MnF2 and GeF4 in aHF and by metathetical reaction between solutions of K2GeF6 in aHF and Mn(AsF6)2 in aHF. Attempt to isolate Mn(GeF5)2 prepared by metathetical reaction between solutions of XeF5GeF5 in aHF and Mn(AsF6)2 in aHF failed, although some slight evidences for its existence were obtained. Vibrational data of MnGeF6 are in agreement with lowering of the symmetry of GeF62– from Oh to C3i because of the site symmetry effects.  相似文献   

17.
ANi(AsF6)3 (A = O2+, NO+, NH4+) compounds could be prepared by reaction between corresponding AAsF6 salts and Ni(AsF6)2. When mixtures of AF (A = Li, Na, K, Rb, Cs) and NiF2 are dissolved in aHF acidified with an excess of AsF5 the corresponding AAsF6 and Ni(AsF6)2 were formed in situ. For A = Li and Na only mixtures of AAsF6 and Ni(AsF6)2 were obtained, while for A = K, Rb and Cs, the final products were ANi(AsF6)3 (A = K-Cs) compounds contaminated with AAsF6 (A = K-Cs) and Ni(AsF6)2.ANi(AsF6)3 (A = H3O+, O2+, NO+, NH4+ and K+) compounds are structurally related to previously known H3OCo(AsF6)3. The main features of the structure of these compounds are rings of NiF6 octahedra sharing apexes with AsF6 octahedra connected into infinite tri-dimensional network. In this arrangement cavities are formed where single charged cations are placed.In O2Ni(AsF6)3 the vibrational band belonging to O2+ vibration is found at 1866 cm−1, which is according to the literature data one of the highest known values, and it is only 10 cm−1 lower than the value for free O2+.  相似文献   

18.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

19.
Two new rare-earth metal containing Zintl phases, Eu11InSb9 and Yb11InSb9 have been synthesized by reactions of the corresponding elements in molten In metal to serve as a self-flux. Their crystal structures have been determined by single crystal X-ray diffraction—both compounds are isostructural and crystallize in the orthorhombic space group Iba2 (No. 45), Z=4 with unit cell parameters a=12.224(2) Å, b=12.874(2) Å, c=17.315(3) Å for Eu11InSb9, and a=11.7886(11) Å, b=12.4151(12) Å, c=16.6743(15) Å for Yb11InSb9, respectively (Ca11InSb9-type, Pearson's code oI84). Both structures can be rationalized using the classic Zintl rules, and are best described in terms of discrete In-centered tetrahedra of Sb, [InSb4]9−, isolated Sb dimers, [Sb2]4−, and isolated Sb anions, Sb3−. These anionic species are separated by Eu2+ and Yb2+ cations, which occupy the empty space between them and counterbalance the formal charges. Temperature-dependent magnetic susceptibility and resistivity measurements corroborate such analysis and indicate divalent Eu and Yb, as well as poorly metallic behavior for both Eu11InSb9 and Yb11InSb9. The close relationships between these structures and those of the monoclinic α-Ca21Mn4Sb18 and Ca21Mn4Bi18 are also discussed.  相似文献   

20.
The ternary BaO-TiO2-B2O3 glasses containing a large amount of TiO2 (20-40 mol%) are prepared, and their optical basicities (Λ), the formation, structural features and second-order optical nonlinearities of BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are examined to develop new nonlinear optical materials. It is found that the glasses with high TiO2 contents of 30-40 mol% show large optical basicities of Λ=0.81-0.87, suggesting the high polarizabity of TiOn polyhedra (n=4-6) in the glasses. BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are found to be formed as main crystalline phases in the glasses. It is found that BaTi(BO3)2 crystals tend to orient at the surface of crystallized glasses. The new XRD pattern for the Ba3Ti3O6(BO3)2 phase is proposed through Rietvelt analysis. The second harmonic intensities of crystallized glasses were found to be 0.8 times as large as α-quartz powders, i.e., I2ω(sample)/I2ω(α-quartz)=0.8, for the sample with BaTi(BO3)2 crystals and to be I2ω(sample)/I2ω(α-quartz)=68 for the sample with Ba3Ti3O6(BO3)2 crystals. The Raman scattering spectra for these two crystalline phases are measured for the first time and their structural features are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号