首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
In this paper we consider a single server queue in which arrivals occur according to a Poisson process and each customer's service time is exponentially distributed. The server works according to the gated process-sharing discipline. In this discipline, the server provides service to a batch of at mostm customers at a time. Once a batch of customers begins service, no other waiting customer can receive service until all members of the batch have completed their service. For this queue, we derive performance characteristics, such as waiting time distribution, queue length distribution etc. For this queue, it is possible to obtain the mean conditional response time for a customer whose service time is known. This conditional response time is a nonlinear function (as opposed to the linear case for the ordinary processor-sharing queue). A special case of the queue (wherem=) has an interesting and unusual solution. For this special case, the size of the batch for service is a Markov chain whose steady state distribution can be explicitly written down. Apart from the contribution to the theory of Markov chains and queues, the model may be applicable to scheduling of computer and communication systems.  相似文献   

2.
We study a tandem queueing system with K servers and no waiting space in between. A customer needs service from one server but can leave the system only if all down-stream servers are unoccupied. Such a system is often observed in toll collection during rush hours in transportation networks, and we call it a tollbooth tandem queue. We apply matrix-analytic methods to study this queueing system, and obtain explicit results for various performance measures. Using these results, we can efficiently compute the mean and variance of the queue lengths, waiting time, sojourn time, and departure delays. Numerical examples are presented to gain insights into the performance and design of the tollbooth tandem queue. In particular, it reveals that the intuitive result of arranging servers in decreasing order of service speed (i.e., arrange faster servers at downstream stations) is not always optimal for minimizing the mean queue length or mean waiting time.  相似文献   

3.
Abstract

This article presents a perishable stochastic inventory system under continuous review at a service facility in which the waiting hall for customers is of finite size M. The service starts only when the customer level reaches N (< M), once the server has become idle for want of customers. The maximum storage capacity is fixed as S. It is assumed that demand for the commodity is of unit size. The arrivals of customers to the service station form a Poisson process with parameter λ. The individual customer is issued a demanded item after a random service time, which is distributed as negative exponential. The items of inventory have exponential life times. It is also assumed that lead time for the reorders is distributed as exponential and is independent of the service time distribution. The demands that occur during stock out periods are lost.The joint probability distribution of the number of customers in the system and the inventory levels is obtained in steady state case. Some measures of system performance in the steady state are derived. The results are illustrated with numerical examples.  相似文献   

4.
The contemporary after-sales market is of increasing importance. One of the features required by the market is to provide differentiated service levels to different groups of customers. We use critical levels as a means to offer differentiation. Critical level policies aim to exploit the differences in target service levels by inventory rationing. In our multi-item single-location spare parts inventory model, we aim to minimize the spare parts provisioning cost, that is inventory holding and transportation cost, under the condition that aggregate mean waiting time constraints for all customer groups are met. In a computational experiment and a case study with data from a company in the semiconductor supplier industry, we show that significant cost reductions can be obtained when critical level policies are used instead of base stock policies (ie policies without critical levels).  相似文献   

5.
We consider a single-server queue subject to multiple types of operation-independent interruptions motivated by operations and vessel queueing at entrances of waterways. A case in point is the Strait of Istanbul. We are using waiting-time arguments and service completion time analysis to obtain the expected waiting time of a customer (vessel) in the aforementioned queue with single-class of customers and k non-simultaneous and possibly simultaneous service interruptions. In the analysis, we have used arguments and assumptions from the Strait of Istanbul that are also valid for narrow waterways at large.  相似文献   

6.
In a queueing system with preemptive loss priority discipline, customers disappear from the system immediately when their service is preempted by the arrival of another customer with higher priority. Such a system can model a case in which old requests of low priority are not worthy of deferred service. This paper is concerned with preemptive loss priority queues in which customers of each priority class arrive in a Poisson process and have general service time distribution. The strict preemption in the existing model is extended by allowing the preemption distance parameterd such that arriving customers of only class 1 throughp — d can preempt the service of a customer of classp. We obtain closed-form expressions for the mean waiting time, sojourn time, and queue size from their distributions for each class, together with numerical examples. We also consider similar systems with server vacations.  相似文献   

7.
《Optimization》2012,61(4):607-621
This paper studies a single-server queueing system in which no customer has to wait for a duration longer than a constant K. If the waiting time is longer than K, then the service time of the previous customer will have to be cut short. Using analytical method together with the property that the queueing process ‘starts anew’ probabilistically whenever an arriving customer initiates a busy period, we obtain various transient and stationary solutions for the system.  相似文献   

8.
In this paper, we consider a queue whose service speed changes according to an external environment that is governed by a Markov process. It is possible that the server changes its service speed many times while serving a customer. We derive first and second moments of the service time of customers in system using first step analysis to obtain an insight on the service process. In fact, we obtain an intriguing result in that the moments of service time actually depend on the arrival process! We also show that the mean service rate is not the reciprocal of the mean service time. Further, since it is not possible to obtain a closed form expression for the queue length distribution, we use matrix geometric methods to compute performance measures such as average queue length and waiting time. We apply the method of large deviations to obtain tail distributions of the workload in the queue using the concept of effective bandwidth. We present two applications in computer systems: (1) Web server with multi-class requests and (2) CPU with multiple processes. We illustrate the analysis and various methods discussed with the help of numerical examples for the above two applications. AMS subject classification: 90B22, 68M20  相似文献   

9.
We are interested in queues in which customers of different classes arrive to a service facility, and where performance targets are specified for each class. The manager of such a queue has the task of implementing a queueing discipline that results in the performance targets for all classes being met simultaneously. For the case where the performance targets are specified in terms of ratios of mean waiting times, as long ago as the 1960s, Kleinrock suggested a queueing discipline to ensure that the targets are achieved. He proposed that customers accumulate priority as a linear function of their time in the queue: the higher the urgency of the customer’s class, the greater the rate at which that customer accumulates priority. When the server becomes free, the customer (if any) with the highest accumulated priority at that time point is the one that is selected for service. Kleinrock called such a queue a time-dependent priority queue, but we shall refer to it as the accumulating priority queue. Recognising that the performance of many queues, particularly in the healthcare and human services sectors, is specified in terms of tails of waiting time distributions for customers of different classes, we revisit the accumulating priority queue to derive its waiting time distributions, rather than just the mean waiting times. We believe that some elements of our analysis, particularly the process that we call the maximum priority process, are of mathematical interest in their own right.  相似文献   

10.
A call center is a facility for delivering telephone service, both incoming and outgoing. This paper addresses optimal staffing of call centers, modeled as M/G/n queues whose offered traffic consists of multiple customer streams, each with an individual priority, arrival rate, service distribution and grade of service (GoS) stated in terms of equilibrium tail waiting time probabilities or mean waiting times. The paper proposes a methodology for deriving the approximate minimal number of servers that suffices to guarantee the prescribed GoS of all customer streams. The methodology is based on an analytic approximation, called the Scaling-Erlang (SE) approximation, which maps the M/G/n queue to an approximating, suitably scaled M/G/1 queue, for which waiting time statistics are available via the Pollaczek-Khintchine formula in terms of Laplace transforms. The SE approximation is then generalized to M/G/n queues with multiple types of customers and non-preemptive priorities, yielding the Priority Scaling-Erlang (PSE) approximation. A simple goal-seeking search, utilizing SE/PSE approximations, is presented for the optimal staffing level, subject to GoS constraints. The efficacy of the methodology is demonstrated by comparing the number of servers estimated via the PSE approximation to their counterparts obtained by simulation. A number of case studies confirm that the SE/PSE approximations yield optimal staffing results in excellent agreement with simulation, but at a fraction of simulation time and space.  相似文献   

11.
Feng  W.  Kowada  M.  Adachi  K. 《Queueing Systems》1998,30(3-4):405-434
In this paper, we present a detailed analysis of a cyclic-service queueing system consisting of two parallel queues, and a single server. The server serves the two queues with a Bernoulli service schedule described as follows. At the beginning of each visit to a queue, the server always serves a customer. At each epoch of service completion in the ith queue at which the queue is not empty, the server makes a random decision: with probability pi, it serves the next customer; with probability 1-pi, it switches to the other queue. The server takes switching times in its transition from one queue to the other. We derive the generating functions of the joint stationary queue-length distribution at service completion instants, by using the approach of the boundary value problem for complex variables. We also determine the Laplace-Stieltjes transforms of waiting time distributions for both queues, and obtain their mean waiting times. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
《Optimization》2012,61(2):261-272
By means of a general formula for stochastic processes with imbedded marked point processes (PMP) some necessary and sufficient condition is given for the validity of a relationship, which is well-known in the case of exponentially distributed service times, between stationary time and customer state probabilities for loss systems G/GI/s/O (Theorem 3). A result of Miyazawa for the GI/GI/l/∞ queue is generalized to the case of non-recurrent interarrival times (Theorem 4)-. Furthermore, bounds are derived for the mean increment of the waiting time process at arrival epochs and for the mean actual waiting time in multi-server queues.  相似文献   

13.
A. D. Banik  U. C. Gupta 《TOP》2007,15(1):146-160
We consider a batch arrival finite buffer single server queue with inter-batch arrival times are generally distributed and arrivals occur in batches of random size. The service process is correlated and its structure is presented through Markovian service process (MSP). The model is analyzed for two possible customer rejection strategies: partial batch rejection and total batch rejection policy. We obtain steady-state distribution at pre-arrival and arbitrary epochs along with some important performance measures, like probabilities of blocking the first, an arbitrary, and the last customer of a batch, average number of customers in the system, and the mean waiting times in the system. Some numerical results have been presented graphically to show the effect of model parameters on the performance measures. The model has potential application in the area of computer networks, telecommunication systems, manufacturing system design, etc.   相似文献   

14.
van Houdt  B.  Lenin  R.B.  Blondia  C. 《Queueing Systems》2003,45(1):59-73
This paper presents an algorithmic procedure to calculate the delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue, where the service time distribution of a customer depends on his waiting time. We consider three different situations: impatient customers in the waiting room, impatient customers in the system, that is, if a customer has been in the waiting room, respectively, in the system for a time units it leaves the waiting room, respectively, the system. In the third situation, all customers are patient – that is, they only leave the system after completing service. In all three situations the service time of a customer depends upon the time he has spent in the waiting room. As opposed to the general approach in many queueing systems, we calculate the delay distribution, using matrix analytic methods, without obtaining the steady state probabilities of the queue length. The trick used in this paper, which was also applied by Van Houdt and Blondia [J. Appl. Probab., Vol. 39, No. 1 (2002) pp. 213–222], is to keep track of the age of the customer in service, while remembering the D-MAP state immediately after the customer in service arrived. Possible extentions of this method to more general queues and numerical examples that demonstrate the strength of the algorithm are also included.  相似文献   

15.
《Optimization》2012,61(3):299-321
In this study, we consider an M/M/c retrial queue with Bernoulli vacation under a single vacation policy. When an arrived customer finds a free server, the customer receives the service immediately; otherwise the customer would enter into an orbit. After the server completes the service, the server may go on a vacation or become idle (waiting for the next arriving, retrying customer). The retrial system is analysed as a quasi-birth-and-death process. The sufficient and necessary condition of system equilibrium is obtained. The formulae for computing the rate matrix and stationary probabilities are derived. The explicit close forms for system performance measures are developed. A cost model is constructed to determine the optimal values of the number of servers, service rate, and vacation rate for minimizing the total expected cost per unit time. Numerical examples are given to demonstrate this optimization approach. The effects of various parameters in the cost model on system performance are investigated.  相似文献   

16.
具有第二次多选择服务的M[X]/G/1排队系统   总被引:9,自引:0,他引:9  
本文研究成批到达的具有第二次多选择服务的单服务员排队系统.顾客的到达形成一广义泊松过程,不同批的顾客按先到先服务的规则,而同一批的顾客按随机次序接受服务.两次服务的服务时间都是一般分布且相互独立.本文采用补充变量法,求得在瞬态和稳态情况下系统队长的概率母函数,然后又计算出顾客的平均队长和平均等待时间.  相似文献   

17.
In this paper we study queueing systems with customer interjections. Customers are distinguished into normal customers and interjecting customers. All customers join a single queue waiting for service. A normal customer joins the queue at the end and an interjecting customer tries to cut in the queue. The waiting times of normal customers and interjecting customers are studied. Two parameters are introduced to describe the interjection behavior: the percentage of customers interjecting and the tolerance level of interjection by individual customers. The relationship between the two parameters and the mean and variance of waiting times is characterized analytically and numerically.  相似文献   

18.
Consider a GI/M/1 queue with phase-type working vacations and vacation interruption where the vacation time follows a phase-type distribution. The server takes the original work at the lower rate during the vacation period. And, the server can come back to the normal working level at a service completion instant if there are customers at this instant, and not accomplish a complete vacation. From the PH renewal process theory, we obtain the transition probability matrix. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at arrival epochs, and waiting time of an arbitrary customer. Meanwhile, we obtain the stochastic decomposition structures of the queue length and waiting time. Two numerical examples are presented lastly.  相似文献   

19.
Consider a symmetrical system of n queues served in cyclic order by a single server. It is shown that the stationary number of customers in the system is distributed as the sum of three independent random variables, one being the stationary number of customers in a standard M/G/1 queue. This fact is used to establish an upper bound for the mean waiting time for the case where at most k customers are served at each queue per visit by the server. This approach is also used to rederive the mean waiting times for the cases of exhaustive service, gated service, and serve at most one customer at each queue per visit by the server.  相似文献   

20.
研究了具有插队和止步行为的M/M/c排队系统. 将到达顾客分为常规顾客和插队顾客, 常规顾客在队尾排队等待服务, 插队顾客总是尽可能的靠近队首插队等待服务. 插队行为由到达顾客的插队概率和队列中等待顾客对插队行为的容忍来描述. 利用负指数分布的性质、Laplace-Stieltjes变换和全概率公式, 给出了处于等待队列位置n的顾客、任意一个常规顾客和任意一个插队顾客的等待时间的表达式. 在此基础上, 讨论了系统相关指标随系统参数的变化情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号