共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
《发光学报》2019,(11)
三个具有不同量子阱宽度的GaAs/AlAs多量子阱结构样品通过分子束外延生长设备生长在半绝缘的(100)p-型GaAs衬底上,并且在量子阱层结构的生长过程中,在GaAs阱层中央进行了Be受主的δ-掺杂。基于这3个结构样品,通过光刻技术和半导体加工工艺制备了相应的两端器件。在4~200 K的温度范围内,我们分别测量了器件的电流-电压特征曲线,清楚地观察到了重、轻空穴通过δ-掺杂Be受主GaAs/AlAs多量子阱结构的共振隧穿现象。发现随着GaAs量子阱层宽的逐渐减小,轻空穴的共振隧穿峰向着高电压方向移动,这个结果和通过AlAs/GaAs/AlAs双势垒结构模型计算的结果是一致的。然而,随着测量温度的进一步升高,两个轻空穴共振峰都朝着低电压的方向移动,并且在150 K温度下,其中一个共振遂穿峰表现为一种振动模式。 相似文献
3.
《发光学报》2019,(10)
在15 nm GaAs/5 nm AlAs单量子阱的GaAs阱层中间,分别进行不同浓度剂量的铍受主的δ-掺杂。铍受主在量子阱层中的扩散浓度分布,由扩散方程数值解出。高温下扩散在GaAs阱层中的Be受主将发生电离,成为带负电荷的受主离子,同时也向量子阱价带的子带中引入空穴。带负电荷的扩散受主离子和价带子带中的空穴,它们都是带电粒子在GaAs阱层中按库伦定律激发电场。相比较而言,对于无掺杂同结构量子阱,在空穴的薛定谔中增加了一个额外的微扰势,从而使无掺杂的量子阱价带的子带有所改变。在有效质量和包络函数近似下,通过循环迭代方法,数值求解了既满足薛定谔方程又满足泊松方程的空穴波函数,找出了自洽、收敛的空穴子带的能量本征值。计算发现考虑到这种额外微扰势,重空穴基态子带hh的能量有一个电子伏特变化,并且随着掺杂受主剂量的增加,重空穴基态子带hh向着价带顶红移,计算结果与实验测量符合得很好。 相似文献
4.
我们测量了低N组分的InGaAsN/InGaAs/GaAs量子阱材料的光致发光(PL)谱,测量温度范围从13K到300K。实验结果显示,InGaAsN的PL谱的主峰值的能量位置随温度的变化呈现出反常的S型温度依赖关系。用Varshni经验公式对实验数据进行拟合之后,发现在低温下InGaAsN量子阱中的载流子是处于局域态的。此外,我们还测量了样品在不同的温度、不同的能量位置的瞬态谱,结果进一步证实了:在低温下,InGaAsN的PL谱谱峰主要是局域态激子的复合发光占据主导地位,而且InGaAsN中的载流子局域态主要是由N等电子缺陷造成的涨落势引起的。 相似文献
6.
采用LP-MOCVD技术在n-GaAs衬底上生长了AlGaInP/GaInP多量子阱红光LED外延片。以X射线双晶衍射技术和光致发光技术对外延片进行了表征,研究了Si掺杂对AlGaInP/GaInP多量子阱性能的影响。研究表明:掺Si能大大提高(Al0.3Ga0.7)0.5In0.5P/Ga0.5In0.5P多量子阱的发光强度。相对于未故意掺杂的样品,多量子阱垒层掺Si使多量子阱的发光强度提高了13倍,阱层和垒层均掺Si使多量子阱的发光强度提高了28倍。外延片的X射线双晶衍射测试表明,Si掺杂并没有使多量子阱的界面质量变差。 相似文献
7.
在红光半导体激光器芯片上采用GaAs介质膜进行无杂质空位扩散诱导量子阱混杂研究。激光器芯片的有源区由一个9 nm厚的GaInP量子阱和两个350 nm厚的AlGaInP量子垒构成,利用MOCVD方法在芯片表面生长GaAs介质膜。在950℃的情况下进行不同时长不同GaAs层厚度的高温快速热退火诱发量子阱混杂。通过光致发光光谱分析样品混杂之后的波长蓝移情况和光谱半峰全宽变化规律。当退火时间达到120 s时,样品获得53.4 nm的最大波长蓝移;在1 min退火时间下获得18 nm的最小光谱半峰全宽。 相似文献
8.
分别用光致发光谱(PL),光伏谱(PV)及时间分辨谱(TRPL)的方法,测量了应变InGaAs/GaAs单量子阱和多量子阱在不同温度下的光谱,发现单量子阱与多量子阱有不同的光学4性质。多量子阱PL谱发光峰和PV谱激子峰的强度与半高宽都比单量子阱的大,但单量子阱的半高宽随着温度的升高增大很快,这是由激子-声子耦合引起的,通过时间分辨谱研究发现了量子阱子能级之间的跃迁,多量子阱的发光寿命明显比单量子阱的长,我们利用形变势模型对量子阱的能带进行了计算,很好地解释了实验结果。 相似文献
9.
光学灾变损伤(COD)常发生于量子阱半导体激光器的前腔面处,极大地影响了激光器的出光功率及寿命。通过杂质诱导量子阱混杂技术使腔面区波长蓝移来制备非吸收窗口是抑制腔面COD的有效手段,也是一种高效率、低成本方法。本文选择了Si杂质作为量子阱混杂的诱导源,使用金属有机化学气相沉积设备生长了InGaAs/AlGaAs量子阱半导体激光器外延结构、Si杂质扩散层及Si 3 N 4保护层。热退火处理后,Si杂质扩散诱导量子阱区和垒区材料互扩散,量子阱禁带变宽,输出波长发生蓝移。退火会影响外延片的表面形貌,而表面形貌则可能会影响后续封装工艺中电极的制备。结合光学显微镜及光致发光谱的测试结果,得到825℃/2 h退火条件下约93 nm的最大波长蓝移量,也证明退火对表面形貌的改变,不会影响波长蓝移效果及后续电极工艺。 相似文献
10.
用选择激发光荧光研究了分子束外延生长的GaAsSb/GaAs单量子阱的光学性质,第一次同时观察到空间直接(Ⅰ类)和间接(Ⅱ类)跃迁.它们表现出不同的特性:Ⅰ类跃迁具有局域化特性,其发光能量不随激发光能量而变;Ⅱ类发光的能量位置随激发功率的增大而蓝移,也随激发光能量的增加而蓝移,复合发光发生在位于异质结GaAs一侧的电子和GaAsSb中的空穴之间,实验结果可以很好地用电荷分离造成的能带弯曲模型来解释,这也是空间间接跃迁的典型特性.还用光荧光的激发强度关系和时间分辨光谱进一步论证了GaAsSb/GaAs能带排列的Ⅱ类特性,并通过简单计算得到了应变和非应变状态下GaAsSb/GaAs异质结的带阶系数. 相似文献
11.
理论上研究了当InGaN发光二极管(LED)有源区的量子阱数变化时,LED的大信号瞬态响应特性与这种变化的关系。结果来自于LED等效电路模型的SPICE模拟,模型参数的确定通过拟合已测量的LED的实验数据及模拟结果来实现。结果表明,LED光脉冲的上升时间随量子阱数的增加而增加,由3个量子阱构成的有源区是LED的优化结构。 相似文献
13.
将量子阱结构引入到单结GaAs太阳能电池中能够有效扩展吸收光谱.为了研究量子阱结构在GaAs太阳能电池中的作用机理,本文采用实验和理论的方法研究了InGaAs/GaAsP量子阱结构对电池量子效率的影响.实验结果表明,量子阱结构的窄带隙阱层材料将电池的吸收光谱从890 nm扩展到1000 nm.同时,量子阱结构的引入提高了680—890 nm波长范围内的量子效率,降低了波长在680 nm以下的量子效率.通过计算得到的量子阱结构和GaAs材料的光吸收系数,可以用来解释量子阱结构对太阳能电池量子效率的影响. 相似文献
14.
15.
本文通过自洽地求解薛定鄂方程及泊松方程计算了在温度T=0, 有效质量近似下, Si均匀掺杂的GaAs/AlGaAs量子阱系统的电子态结构. 研究了掺杂浓度及掺杂层厚度对子带能量, 本征包络函数, 自洽势, 电子密度分布, 及费米能量的影响. 发现在给定掺杂浓度下, 子带能量随掺杂层厚度的增加单调递减, 自洽势的势阱变宽变浅, 电子密度分布变宽, 峰值变低; 在给定掺杂层厚度下, 随掺杂浓度的增加子带能量及费米能级单调递增, 自洽势阱变深变陡变窄, 电子密度分布的峰值变高, 集中在中心.关键词:掺杂量子阱电子结构半导体GaAs 相似文献
16.
嵌入GaAs中的GaAsSb/GaInAs量子阱因其在1.3~1.5μm光通信波段发光的潜力而受到关注,我们研究了一系列MBE生长的GaAsSb/GaInAs量子阱样品的光致发光,发现所有样品在室温下都出现了一个较强的、波长在1.3μm附近的低能峰和一个较弱的高能峰。变温及变激发功率的荧光谱测量研究发现,高能峰只有在150K以上的测试条件下才能观测到,并且其相对强度随着温度的升高而增加,其调制光谱显示出第一类跃迁的特征。他们建立了理论模型,计算的结果支持将这一发光峰指派为GaInAs层内电子的基态与重空穴激发态间的跃迁,并与实验数据吻合得很好。同时初步讨论了改善1.3μm的低能峰发光的方法。 相似文献
17.
利用低压金属有机化学气相沉积技术(LP-MOCVD)生长InGaAs/GaAs单量子阱(SQW),通过改变生长速率、优化生长温度和V/III比改善了量子阱样品的室温光致发光(PL)特性。测试结果表明,当生长温度为600℃、生长速率为1.15μm/h时,生长的量子阱PL谱较好,增加V/III比能够提高量子阱的发光强度。实验分析了在不同的In气相比条件下,生长速率对量子阱质量的影响,利用模型解释了高In气相比时,随着生长速率增加PL谱蓝移现象消失的原因。 相似文献
18.
19.
20.
研究了InGaAs/GaAs/InGaP量子阱激光器在不同温度下的电流-电压特性,并建立了一个理论模型进行描述。实验所用激光器腔长为0.3 mm,脊条宽度为3μm。实验测量得到该激光器在15~100 K的电压温度系数(dV/dT)为7.87~8.32 mV/K,在100~300 K的电压温度系数为2.93~3.17 mV/K。由理论模型计算得到该激光器在15~100 K的电压温度系数为2.56~2.75 mV/K,在100~300 K的电压温度系数为3.91~4.15 mV/K。在100~300 K,实验测量与理论模型计算得出的电压温度系数接近,理论模型能较好地模拟激光器的温度电压特性;但在15~100 K相差较大,还需要进一步完善。 相似文献