首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用两步法成功合成了单一基质双光色Ba10-x(PO44(SiO42:xEu2+荧光粉,研究了稀土离子占据不同的晶格格位对荧光粉光谱特性的影响。结果表明:两步法合成的荧光粉发射光谱由414 nm的蓝光波带和504 nm绿光波带两种光色组成,而传统的高温固相法制备的荧光粉只有504 nm处的绿光发射。荧光粉发光性能与Eu2+离子在磷灰石晶体结构中占据的晶格位置关系十分密切。两步法荧光粉双光色的形成主要是由于在第一步氧化气氛合成过程中Eu3+离子取代了基质结构中的Ba和Ba两个格位的Ba2+离子;在第二步还原过程结束后,Eu2+离子仍然占据着两种格位,从而形成了两种具有不同配位环境的发光中心。此外,双发射峰的相对强度能够通过Eu2+离子对Ba格位的取代率而调节,进而实现光谱的调变。  相似文献   

2.
通过高温固相法制得双峰可调节本征半导体发光Ba Zn_2(BO_3)_2∶Eu~(3+)荧光粉,此类荧光粉在300~400nm的紫外波段有很强的吸收。在375 nm的紫外光激发下,该荧光粉产生了两个宽带的发射峰,分别位于550nm和615 nm处。并且,在395 nm的紫光激发下,荧光粉会由于Eu~(3+)离子的~5D_0→~7F_2电偶极跃迁产生一个位于615 nm的强宽发射峰,这表明Eu~(3+)离子占据了反演对称中心的位置,取代了Ba Zn_2(BO_3)_2中部分的Ba~(2+)离子。当Eu~(3+)的摩尔分数达到10%时,发生浓度猝灭。在不同浓度的Eu~(3+)离子的掺杂下,Ba Zn_2(BO_3)_2∶Eu~(3+)荧光粉的发光从黄色延伸到红色,实现了荧光粉的色度可调。  相似文献   

3.
采用高温固相法在1 170℃还原气氛下保温3.5 h制备了(Ca_(1-x)Ba_x)_(1.95)SiO_4∶0.05Eu(x=0, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)系列新型荧光粉,并研究了其基体晶相、 Eu离子价态、光谱性能。随着x值增大,粉末物相组成发生如下改变:γ-Ca_2SiO_4(x=0)→T相和γ-Ca_2SiO_4混合物(0≤x0.7)→T相(0.7≤x0.9)→Ba_2SiO_4相(x≥0.9),即(Ca_(1-x)Ba_x)_2SiO_4粉末只在富Ba端形成有限置换型固溶体,即T相和Ba_2SiO_4相粉末。点阵参数精确分析表明:随着Ba离子增加, T相荧光粉(0.7≤x0.9)处于M1, M2, M5点位碱土离子配位数增大进而晶格参数增大较为明显,而Ba_2SiO_4相荧光粉(x≥0.9)中碱土离子配位数无变化晶格参数变化也较小; Eu离子以取代碱土离子方式进入晶格,对晶格影响较小。T相和Ba_2SiO_4相荧光粉XPS全谱分析结果类似,均出现Ba(3p_(3/2)), Ba(3d_(3/2)), Ba(3d_(5/2)), O(1s), Eu(4d), Si(2p_(3/2))电子结合特征峰;其O(1s)核心电子结合能精细谱也类似,有2个光电子峰组成,分别对应晶格氧、间隙氧缺陷(Eu~(3+)取代+2碱土离子造成);进一步Eu(4d)高分辨XPS分析表明,随着x值增大, T相粉末Eu~(2+)/Eu~(3+)比值增大(Eu离子形成+2可能性增大),而Ba_2SiO_4相粉末Eu~(2+)/Eu~(3+)比值变化不明显。在254和365 nm紫外激发下Ca_(1.95)SiO_4∶0.05Eu(γ-Ca_2SiO_4相荧光粉)可用作红色荧光粉,而(Ca_(1-x)Ba_x)_(1.95)SiO_4∶0.05Eu(x≥0.7,即T相(其绿光宽谱发射峰中心在455 nm附近)或Ba_2SiO_4相荧光粉(其绿光宽谱发射峰中心在510 nm附近))可用作绿色荧光粉; T相荧光粉绿光发射比Ba_2SiO_4相荧光粉绿光发射对应波长更短;随着x值增加T相和Ba_2SiO_4相荧光粉发射光谱发生蓝移(即T相粉末中(Ca_(0.3)Ba_(0.7))_(1.95)SiO_4∶0.05Eu绿光发射波长最长, Ba_2SiO_4相粉末中(Ca_(0.1)Ba_(0.9))_(1.95)SiO_4∶0.05Eu绿光发射波长最长);随着x值增加, T相荧光粉亮度提高,而Ba_2SiO_4相荧光粉亮度降低,即(Ca_(0.1)Ba_(0.9))_(1.95)SiO_4∶0.05Eu粉末的绿色荧光最亮(荧光寿命571.8 ns、量子效率55%)。由绿色荧光粉(x≥0.7)精细发射光谱可知:x值会影响Ba_2SiO_4相Eu~(2+)占位倾向,x值越大Eu~(2+)在Ba_2SiO_4相荧光粉中进入高配位点几率越小(x值小, Ca离子占据9配位点位,有促进Eu离子倾向进入10配位作用),但在T相中的x值作用则不明显。由此可见:改变固溶度(即控制x值),可实现该系列荧光粉物相组成、晶格参数、离子价态、荧光颜色及亮度的调控。  相似文献   

4.
采用高温固相法合成了Ba2Ca(PO4)2:Eu2+蓝色荧光粉,研究了合成温度、合成时间、Ba/Ca比值以及Eu2+掺杂量等对材料的物相及发光特性等的影响.研究结果显示,合成温度为900/1200?C,合成时间为4 h时,可以获得纯相的Ba2Ca(PO4)2;以343 nm紫外线作为激发源时,Ba2Ca(PO4)2:Eu2+呈非对称的宽谱特征,主峰位于454 nm,分析认为,Eu2+在Ba2Ca(PO4)2中占据不同的晶体学格位,形成了不同的发光中心,造成材料呈非对称发射;监测454 nm发射峰,对应的激发光谱覆盖200—450 nm区域,主峰位于343 nm,且在长波紫外段(350—410 nm)有很强的激发带;增大Eu2+掺杂量,Eu2+在Ba2Ca(PO4)2中的发射出现了浓度猝灭现象,且材料的发射峰出现了明显的红移;减小基质中Ba/Ca配比,材料在绿色区域的发射逐渐增强,材料的发光颜色由蓝逐渐变为蓝绿色,分析认为,Eu2+进入Ba2Ca(PO4)2基质体系后,不但取代Ba2+的格位,而且取代Ca2+的格位,形成不同的发光中心,从而影响材料的发光特性.  相似文献   

5.
采用传统固相法在1100℃合成了SrGe_(4-x)O 9∶x Mn^(4+)(SGOM)系列荧光粉,通过Ba^(2+)取代Sr 2+调制了荧光粉基质的局部结构,对样品的晶体结构、发光性质和热稳定性进行了探讨。XRD测试结果表明,Mn^(4+)和Ba^(2+)均成功地掺杂进入基质SrGe_(4)O_(9)晶格,没有其他物相产生。在275 nm紫外光激发下,SGOM荧光粉的发射光谱是位于600~750 nm的深红色谱带,峰值波长位于660 nm,主要源于Mn 4+离子^(2)E g→^(4)A _(2g)能级跃迁的窄带发射,优化的Mn^(4+)浓度为0.015。利用Ba^(2+)离子对SrGe _(3.985) O _(9)∶0.015Mn^(4+)荧光粉的发光性质进行调控,发现随着Ba^(2+)浓度增大,发射光谱的强度先上升后下降,最佳Ba^(2+)浓度为0.4。Ba^(2+)离子的引入造成基质结构中Sr1O10多面体产生局部扩张,导致样品的发射光谱展宽。为了解决封装白光LED中有机材料存在的难以承受发热的问题,制备出了基于SrGe _(3.985) O _(9)∶0.015Mn^(4+)荧光粉的荧光玻璃。优良的发光性质和热稳定性使SGOM荧光粉具备了应用于白光LED器件的前景。  相似文献   

6.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

7.
采用高温固相法合成了Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)荧光粉,X射线粉末衍射数据分析结果表明,试样为氧磷灰石结构,属于六方晶系,具有P63/m(176)空间点群结构.荧光光谱分析结果表明,Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)激发光谱为位于200~600nm,由275nm、336nm两个宽峰和392nm、461nm、466nm、523nm等锐线峰组成.两个宽带激发峰可由272nm、300nm、336nm三峰拟合而成,峰面积比为1:0.52:4.09.272nm、300nm峰归属于Eu3+的电荷迁移激发跃迁态,336nm峰来自Eu2+的f-d跃迁.在393nm激发下,Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)发射光谱在500~750nm范围内呈现多条锐线发射,在613nm处发射峰最强,以电偶极跃迁5D0→7F2为主,Eu3+占据无反演对称中心格位.Eu3+磁偶极跃迁5D0→7F1处的峰可由584.5nm、588.5nm、594nm、597nm四峰拟合而成,表明Eu3+进入基质晶格中占据4f(C3)和6h(Cs)两种格位.X射线光电子能谱图分析结果表明,试样中Eu3+与Eu2+的含量比接近2∶1.Eu2+与Eu3+存在能量传递作用,试样在紫外灯下照射呈现烛光黄色,可用于LED.  相似文献   

8.
SrLiAl_3N_4∶Eu~(2+)红色荧光粉的制备与发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
使用高温固相法于还原气氛中合成了SrLiAl_3N_4∶Eu~(2+)荧光粉并研究了其晶体结构和发光性质。样品均可以被蓝光或紫外光有效激发发射红光。XRD和SEM图谱显示合成了单相SrLiAl3N4。粉体的激发光谱在200~600nm波长范围内呈现出双峰宽带激发带,在267nm、474nm处分别有一个激发峰。发射光谱仅有一个宽带发射峰,峰值在654nm处,属于Eu~(2+)离子的5d→4f特征跃迁。荧光粉发光强度与Eu~(2+)离子掺杂摩尔分数之间的关系表明:随着Eu~(2+)离子掺杂摩尔分数的增加,粉体发光强度先上升后下降,最佳掺杂摩尔分数为0.4%,继续增大Eu~(2+)离子的掺杂量会发生浓度猝灭现象。所准备的SrLiAl_3N_4∶Eu~(2+)荧光粉具有较好的热稳定性和较高的量子效率。  相似文献   

9.
单离子掺杂体系单一基质白光荧光粉可以有效克服紫外芯片+三基色荧光粉获得白光方案中颗粒分散性和沉降性不均的问题,克服荧光粉彼此间发光再吸收及三基色配比调控等问题.本文采用熔融盐法制备了Sm~(3+)离子单掺NaLa(WO_4)_2:x Sm~(3+)白光荧光粉.在紫外光激发下,WO_4~(2-)自激活发出的蓝绿光,与Sm~(3+)发射的绿光、黄光、橙光和红光混合得到了白光.在250 nm激发下,荧光粉会发出冷白光;在403 nm激发下会发出暖白光.随着Sm~(3+)掺杂浓度增加,相对色温逐渐降低.所制备的样品均为纯的四方相结构,晶粒形貌为不规则菱形薄片.通过分析实验数据确定Sm~(3+)离子间的能量猝灭类型为电偶极-电偶极作用.得到的NaLa(WO_4)_2:x Sm~(3+)荧光粉具有较高的稳定性,能被近紫外LED芯片有效地激发,可作为单离子掺杂单一基质白光荧光粉潜在候选.  相似文献   

10.
采用高温固相反应法制备了Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)系列荧光粉,研究Y~(3+)离子掺入对荧光粉发光性能的影响。对于Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入主要起到稳定Eu~(2+)价态的作用,避免Eu~(2+)氧化为Eu~(3+),从而提高Sr Si_2O_2N_2∶Eu~(2+)的发光性能。对于Ca Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入除了稳定Eu~(2+)价态作用外,还能有效减小Eu~(2+)取代Ca~(2+)后晶格膨胀引起的应力,提高Eu~(2+)在晶格中的溶解度。Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)(x=0,0.15,0.3,0.6,0.75,0.95)系列荧光粉中随着Ca含量的增加,共掺Y~(3+)离子对样品发光强度的提高程度也随之增加(20%~80%)。  相似文献   

11.
本文采用纳米EuB_6和Eu_2O_3粉末为激活剂原料,提出了一步法和两步法,在常压条件下制备获得了CaAlSiN_3:Eu~(2+)红色荧光粉.对不同掺杂Eu浓度(2%—10%)的样品进行了晶体结构、形貌、发光性能的分析研究.根据能谱与X射线衍射图谱(XRD)分析可知,两步法合成的样品随Eu浓度的增加晶胞体积会逐渐增大,且样品中B的含量增加;而一步法合成的样品随Eu浓度增加晶胞体积先增大后减小,且B含量相对上面的样品含量较少,O含量却较大.另外,在460 nm蓝光激发下,两步法合成的样品(纳米EuB_6掺杂)的发射最强峰在652—680 nm范围,而一步法合成的样品(纳米Eu_2O_3掺杂)的发射最强峰只在630—637 nm范围,且前者的荧光相对强度都强于后者.结合XRD以及荧光光谱数据可以认为两种常压氮化制备方法都会让B元素引入到基质中,B的引入不但降低基质中O的含量,而且改变Eu~(2+)离子的晶体场环境从而调节CaAlSiN_3:Eu~(2+)荧光粉的发光峰位.结合绿光发射荧光粉和纳米EuB_6掺杂的Ca_(0.94)AlSiN_3:0.06Eu~(2+)荧光粉在蓝光芯片激发下可以获得色温在3364 K,显色指数可以达到91的暖白发光二极管器件.本实验采用的方法简单,避免使用昂贵复杂的气压烧结设备以及还原性气体烧结设备,有望实现工业化应用以及降低生产成本.  相似文献   

12.
本文研究稀土离子Ce~(3+)和S~2型离子(Pb~(2+)和Sn~(2+))在β′-Al_2O_3型富钡相六角铝酸盐1.30BaO·6Al_2O_3中的发光性质。发射光谱和激发光谱表明,在富钡相中激活离子占据两个不等当的晶体学格位。Ce~(3+)激活的样品,发射光谱由四个带组成,其相对强度不依赖于激活离子的浓度,不同Ce~(3+)发光中心间没有能量传递。对于Pb~(2+)和Sn~(2+),在紫外激发下,荧光光谱包含三个带,Pb~(2+)的带峰值为390nm,425nm和485nm;Sn~(2+)为388nm,418nm和457nm。425nm和418nm发射分别归于占据晶体学BR格位的Pb~(2+)和Sn~(2+);390nm和388nm发射归于反BR格位上的Pb~(2+)和Sn~(2+);而485nm和457nm的带分别是Pb~(2+)和Sn~(2+)的离子对的发射。离子对是由占据(Ba)_nO镜面层上的BR和反BR格位的Pb~(2+)(或Sn~(2+))所形成。Pb~(2+)和Sn~(2+)离子的发光按照S~x型离子能级作了讨论。  相似文献   

13.
采用传统固相法在1 100℃合成了SrGe_(4-x)O_9∶xMn~(4+)(SGOM)系列荧光粉,通过Ba~(2+)取代Sr~(2+)调制了荧光粉基质的局部结构,对样品的晶体结构、发光性质和热稳定性进行了探讨。XRD测试结果表明,Mn~(4+)和Ba~(2+)均成功地掺杂进入基质SrGe_4O_9晶格,没有其他物相产生。在275 nm紫外光激发下,SGOM荧光粉的发射光谱是位于600~750 nm的深红色谱带,峰值波长位于660 nm,主要源于Mn~(4+)离子~2E_g→~4A_(2g)能级跃迁的窄带发射,优化的Mn~(4+)浓度为0.015。利用Ba~(2+)离子对SrGe_(3.985)O_9∶0.015Mn~(4+)荧光粉的发光性质进行调控,发现随着Ba~(2+)浓度增大,发射光谱的强度先上升后下降,最佳Ba~(2+)浓度为0.4。Ba~(2+)离子的引入造成基质结构中Sr1O10多面体产生局部扩张,导致样品的发射光谱展宽。为了解决封装白光LED中有机材料存在的难以承受发热的问题,制备出了基于SrGe_(3.985)O_9∶0.015Mn~(4+)荧光粉的荧光玻璃。优良的发光性质和热稳定性使SGOM荧光粉具备了应用于白光LED器件的前景。  相似文献   

14.
Eu~(3+)掺杂的Na_2YMg_2(VO_4)_3荧光粉制备和发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
李中元  李勇  夏爱林 《发光学报》2017,38(3):296-302
采用溶胶-凝胶法制备了Na2Y1-xMg2(VO4)3∶x Eu~(3+)(x=0.15~0.75)系列自激活荧光粉。用XRD、SEM、光致发光光谱和荧光衰减曲线分别对其结构、形貌和发光性能进行表征。XRD结果显示样品为纯石榴石结构,其中Eu~(3+)取代Y~(3+);SEM照片显示样品为粒径大小在0.3~1μm范围内不规则的光滑球状颗粒;光谱分析表明,Na2YMg2(VO4)3作为自激活发光基质可以被200~400 nm紫外光有效激发,发出源于VO_4~(3-)电荷迁移跃迁的波长范围为400~700 nm的宽谱带绿光。掺杂Eu~(3+)后,在340 nm紫外光激发下同时出现了VO_4~(3-)的电荷迁移带和Eu~(3+)的特征光谱。不同浓度Eu~(3+)掺杂的光谱和荧光衰减曲线表明,存在VO_4~(3-)和Eu~(3+)之间的能量传递。  相似文献   

15.
以Sr_6Ca_4(PO_4)_6F_2为基质、Eu~(2+)/Mn~(2+)为掺杂离子、H_3BO_3为助剂,利用固相法制备了系列发光材料。由X射线衍射图可知,材料的相是单一的。利用Mn~(2+)离子的浓度猝灭效应以及Eu~(2+)-Mn~(2+)能量传递过程中存在的"瓶颈效应"和"反瓶颈效应"解释了Sr_6Ca_4(PO_4)F_2∶Eu~(2+),Mn~(2+)量子效率降低的原因。通过添加助剂H_3BO_3及调控阳离子的方式有效地提高了Sr_6Ca_4(PO_4)F_2∶Eu~(2+),Mn~(2+)的量子效率,采用精修手段分析了发光中心所处晶体场环境的变化情况,并解释了两种调控过程中Eu~(2+)和Mn~(2+)发射强度变化的原因。  相似文献   

16.
采用高温固相法制备了一系列(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)(0≤x≤0.25)绿色荧光粉,并研究了Mg离子对(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)的结构、荧光以及长余辉发光性能的影响。Mg离子取代Zn进入Zn_2GeO_4晶格,形成(Zn_(1-x),Mg_x)_2GeO_4固溶体,并产生了晶格畸变。光谱分析结果表明,样品中位于533 nm的绿色荧光源于Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)跃迁。随着Mg离子浓度的增加,(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)样品的激发光谱出现了蓝移现象,说明Mg离子进入到Zn_2GeO_4晶格中对其晶格结构产生了影响,导致(Zn_(1-x),Mg_x)_2GeO_4的带宽发生改变。发射光谱则表明Mg离子进入Zn_2GeO_4晶格引起Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)跃迁绿色荧光发光强度的增强。Zn_2GeO_4基质中的氧空位缺陷陷阱深度由于基质带宽的变化而变深,样品具有良好的长余辉发光效果。通过热释光谱分析研究了材料中缺陷陷阱的特征,进一步证实了(Zn_(1-x),Mg_x)_2GeO_4中缺陷陷阱深度发生改变。根据光谱分析结果给出了(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)中荧光与余辉发光的产生机理。  相似文献   

17.
采用水热法制备了CaGd_(2-x-y)(MoO_4)_4∶xEu~(3+),yBi~(3+)(x=0.01~2,y=0~0.04)系列红色荧光粉。分别用XRD、SEM和荧光分光光度计对样品的晶体结构、微观形貌和发光性能进行了研究。结果表明,样品荧光粉具有体心四方白钨矿结构,属于I4_1/a(88)空间群,15%Eu~(3+)和1%Bi~(3+)(摩尔分数)的相继掺杂对样品基质晶体结构影响不大。样品粉末颗粒呈类八面体状,粒度比较均一,分散性良好,粒径在3~5μm之间。样品的激发光谱由位于200~350 nm的激发宽带和位于350~550 nm的系列激发峰构成,最强激发峰位于396 nm。发射主峰位于617 nm,对应于Eu~(3+)的~5D_0→~7F_2特征跃迁发射。研究未发现Eu~(3+)的浓度猝灭现象。Bi~(3+)的掺杂能对Eu~(3+)起敏化作用,显著提高样品的红光发射和色纯度,其作用类型为交换交互型,最佳掺杂量y=0.01。  相似文献   

18.
采用溶胶-凝胶法合成了系列Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)红色荧光粉。通过X射线粉末衍射、荧光光谱等对合成的荧光粉样品进行表征,并系统地研究了烧结温度、Eu~(3+)掺杂浓度对样品发光强度的影响。结果表明:该荧光粉能被近紫外光(393 nm)有效激发;当烧结温度为800℃、Eu~(3+)的掺杂量为5.0%(摩尔分数)时,样品发射出的荧光强度最强。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)样品的色坐标(0.684,0.316)与红色标准值(x=0.670,y=0.330)非常接近。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)是一种很好的新红色荧光粉。  相似文献   

19.
利用高温固相法制备NaMg_(4-x)Ca_x(VO_4)_3∶0.01Eu~(3+)(x=0~2)、NaMg_(2.1)Ca_(1.9-y)(VO_4)_3∶yEu~(3+)(y=0~0.19)、NaMg_(2.1)Ca_(1.9-y)(VO_4)_3∶yEu~(3+),yX~-(X=Cl,F)和NaMg_(2.1)Ca_(1.9-2y)(VO_4)_3∶yEu~(3+),yM~+(M=Li,Na,K)系列荧光粉,采用X射线粉末衍射仪、扫描电子显微镜和荧光分光光度计对样品进行了结构和性能表征。探讨基质结构变化和Li~+、Na~+、K~+、F~-、Cl~-等阴阳离子的电荷补偿作用对VO■和Eu~(3+)发光性能的影响以及能量传递机理。研究表明立方相NaMg_2Ca_2(VO_4)_3比四方相NaMg_4(VO_4)_3更能被紫外光有效激发,同时发射基质的蓝绿光和铕离子的红光,且VO■和Eu~(3+)之间的能量传递效率达到42.21%。电荷补偿剂能显著提高Eu~(3+)的发射强度,同时基质发光强度减弱表明电荷补偿剂增强了基质与激活剂离子间的能量传递。通过控制合成条件可以得到单一基质白光发射荧光粉。  相似文献   

20.
为了得到最长有效余辉时间的Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)荧光粉,应用二次通用旋转组合设计对实验进行全程优化,建立了稀土离子掺杂浓度Eu~(2+),Dy~(3+)和有效余辉时间的二元二次回归方程模型,应用遗传算法计算得到有效余辉时间的理论最大值.采用高温固相法合成了最优掺杂浓度Sr_2MgSi_2O_7:0.5mol%Eu~(2+),1.0mol%Dy~(3+)的荧光粉,在370nm激发下观察到了465nm的特征发射,这归因于Eu~(2+)的4f65d1—4f7跃迁.测量了最优荧光粉的热释发光特性,计算得到了陷阱深度为0.688eV,讨论了长余辉发光的特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号