首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanochemical energy conversion exhibited by water-swollen poly(vinyl alcohol) gels has been studied. The effective mechanical work produced as well as the chemical energy converted were measured simultaneously. It is shown theoretically and experimentally that the mechanical work developed during the swelling of the mechanochemical system increases with increase of the external load (m), the degree of cross-linking (DC) and the deswelling ratio (ϕ/ϕe, i.e. the ratio of the volume fraction of network polymer (ϕ) to that of the same gel in equilibrium with pure diluent (ϕe)). The chemical energy converted was found to be practically independent of m. The efficiency of energy conversion increased with increase of m and DC, and significantly decreased with increase of ϕ/ϕe. Comparison is made between theoretical predictions and experimental findings.  相似文献   

2.
Nanostructured conductive polymers can offer analogous environments for extracellular matrix and induce cellular responses by electric stimulation, however, such materials often lack mechanical strength and tend to collapse under small stresses. We prepared electrically conductive nanoporous materials by coating nanoporous cellulose gels (NCG) with polypyrrole (PPy) nanoparticles, which were synthesized in situ from pyrrole monomers supplied as vapor. The resulting NCG/PPy composite hydrogels were converted to aerogels by drying with supercritical CO2, giving a density of 0.41–0.53 g cm?3, nitrogen adsorption surface areas of 264–303 m2 g?1, and high mechanical strength. The NCG/PPy composite hydrogels exhibited an electrical conductivity of up to 0.08 S cm?1. In vitro studies showed that the incorporation of PPy into an NCG enhances the adhesion and proliferation of PC12 cells. Electrical stimulation demonstrated that PC12 cells attached and extended longer neurites when cultured on NCG/PPy composite gels with DBSA dopant. These materials are promising candidates for applications in nerve regeneration, carbon capture, catalyst supports, and many others.  相似文献   

3.
Topological molecular connections and structures, including physical entanglements in polymer networks, knots along polymer chains, and rotaxanes in sliding ring gels, have important consequences for the physical properties of polymeric materials. Often these topologies contribute through their ability to bear mechanical stress, but experimental measures of their relative mechanical strength are rare. Here, we use sonochemical polymer mechanochemistry to assess the relative mechanical strength of a multicatenane copolymer relative to copolymers of cyclic and linear analogs. The relative mechanical strengths are obtained by comparing the limiting molecular weights (Mlim) and contour lengths (Llim) of the polymers under pulsed ultrasound of their dilute solutions. The values of Mlim and Llim, and thus the inferred mechanical strengths of the polymers, are effectively identical. The mechanical bonds of the catenanes are therefore as strong, or stronger, mechanically as the covalent bonds along the polymer backbone.  相似文献   

4.
The influence of the specific surface area on the crystallization processes of two silica gels with different specific surface areas has been investigated in non-isothermal conditions using DTA technique. The activation energies of the crystallization processes were calculated using four isoconversional methods: Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose, Starink and Tang. It has been established that, the decrease of the surface area from S=252.62 m2 g−1, in the case of sample GS2, to S=2.52 m2 g−1, in the case of sample GS1, has determined a slight increase of the activation energy of the crystallization process of the gels. Regardless of the isoconversional method used, the activation energy (E α) decreases monotonously with the crystallized fraction (α), which confirms the complex mechanism of gels crystallization. It has been proved that the Johnson-Mehl-Avrami model cannot be applied for the crystallization processes of the studied silica gels.  相似文献   

5.
The microscopic process of abrasive wear and friction in glassy polymers was studied by using a special microscratch technique. A miscible blend of polystyrene (PS) and poly(phenylene oxide) (PPO) was used. It was found that as the composition varies there seems to exist two wear regimes in the blends controlled by different breakdown mechanisms corresponding to the brittle—ductile transition. Detailed study of the contact loads and SEM micrographs indicate that abrasive wear in the glassy polymers is controlled by microcracking under the asperity contacts. The critical load τc for initiating microscopic cracks can be linked to the macroscopic wear via a statistical Weibull model where τc is taken to be the mean of a strength distribution function. On the other hand, the friction coefficient was found to be independent of the composition but to vary strongly with the contact load. It approaches zero at the extrapolated zero load, but increases rapidly and eventually levels off with contact load. This behavior can be understood by a simple frictional adhesion model in which the polymer deformation during a frictional contact is analyzed by considering the compressive plastic ploughing and shearing yielding around the asperity contact. The shear strength So of the polymer/asperity contacts was found to vary with the normal load. The vertical scratch hardness Hv, which characterizes the spontaneous indentation yielding on the polymer surface, was found to be independent of scratch length and depth, and indeed can be regarded as a material constant. Although both So and Hv can accurately describe the frictional behavior of the glassy polymers, they bear no correlation to abrasive wear in the same materials. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1295–1309, 1997  相似文献   

6.
Large-sized, optical transparent mesostructured Brij 56/silica monolith has been fabricated using a lyotropic liquid crystal of Brij 56 (C16EO10) as a template and TMOS as a silica source, combined with a optimizing sol-gel process and a hydrothermal aging process. By programmed temperature drying and calcinations, translucent mesoporous silica monolith with two-dimensional hexagonal structure (P6mm) has bee obtained. The ordered mesoporous silica monoliths have been characterized by small-angle X-ray diffraction, transmission electron microscopy (TEM), and nitrogen adsorption, which shows that the materials have a highly ordered two-dimensional hexagonal mesostructure with the high specific surface area of 837 m2 · g−1 and narrow pore distribution with a mean BJH pore diameter of 2.73 nm. Based on calculations and differential scanning calorimetry and thermogravimetric analyses, the action mechanism of the hydrothermal aging process has been proposed: the 100°C hydrothermal conditions and autogenous 2.3 atm pressure promote the condensation and dehydration of silanol groups, with the result that cross-linking degree, the flaws and moisture content in gels are reduced notably. Those processes guarantee the integrity of gels in the following drying process.  相似文献   

7.
Double‐network (DN) gels, a type of interpenetrating polymer network (IPN) consisting of rigid and flexible polymer components, exhibit two outstanding mechanical behaviors: yielding deformation of the entire specimen in tensile tests and quite high fracture energy in tearing tests. In this study, atomic force microscope (AFM) measurements were conducted on DN gels to determine the local Young's moduli immediately below the fracture surfaces Ef and below the usual molded surfaces Em, and compare the local modulus with bulk Young's moduli measured before and after the yielding deformation, denoted as Eh and Es, respectively. Em and Eh are around 0.1 MPa; Ef and Es, around 0.01 MPa, one order lower than the former two moduli. The order relation indicates that yielding deformation occurred locally around the crack tip of the DN gel during fracture. This supports the basic assumption of phenomenological models recently proposed to explain high fracture energy of DN gels. (H. R. Brown, Macromolecules 2007 , 40, 3815–3818; Y. Tanaka, Europhys. Lett. 2007 , 78, 56005).

  相似文献   


8.
The potential to improve mechanical, structural, and mechanochemical properties of charge‐functionalized poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA)‐based hybrid cryogels is investigated. The simple and versatile synthesis of hybrid cryogels with high strength and toughness using cationic DMAEMA and ionic comonomer 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid has been proposed via in situ free‐radical crosslinking (cryo)polymerization by which the properties of virgin polymer can be modulated to required applications by incorporation of inorganic filler kaolin (KLN). Two factors affecting swelling and elasticity of hybrid gels (referred as PDA/KLNm), KLN content and gel preparation temperature, are studied. The optimum KLN concentration for desired swelling and modulus of elasticity is determined as 0.80% (w/v). Effective crosslinking density of hybrid hydrogels increases with KLN addition and this dependence is expressed by a quadratic polynomial as a function of KLN concentration. The results show that obtained hybrid gels with multiresponsive properties could be regarded as “smart materials” in sensing and actuation applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1758–1778  相似文献   

9.
Nanosized zinc aluminate spinel (gahnite, ZnAl2O4) powders were prepared by sol−gel technique at low sintering temperatures. Aluminium-sec-butoxide [Al(OsBu)3] and zinc nitrate hexahydrate Zn(NO3)2 . 6H2O were used as starting materials. Gels with and without chelating agent were prepared. Ethyl-acetoacetate (C6H10O3) was used as a chelating agent in order to control the rate of hydrolysis of Al(OsBu)3. The dried gels and thermally treated samples were characterized by means of Differential Thermal Analysis and Thermo-Gravimetric Analysis (DTA, TGA), X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). The surface area was measured by Brunauer-Emmet-Teller (BET) adsorption–desorption isotherms. It has been established that chelation enables to obtain a transparent gel. The thermal evolution of gels was characterized by two crystallization processes in the range 200–400 °C and 600–700 °C. Both processes yielded pure ZnAl2O4 as evidenced by XRD, i.e. zinc aluminate spinel powders were produced by gel heat-treatment at temperatures as low as 300 °C. The average gahnite crystallite size for the samples sintered in the temperature range of 400–1000 °C has been calculated from the broadening of XRD lines revealing that nanocrystalline powders were prepared. The surface areas measured for the samples fired at 700 °C for 2 h were 43.1 and 62.6 m2 g−1, for sample without and with the chelating agent, respectively. TEM micrographs confirmed the nano-scale size of particles.  相似文献   

10.
The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T<Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.  相似文献   

11.
Although the importance of circularly polarized luminescence (CPL) materials has been widely recognized, the CPL responses of supramolecular gels are still rarely studied. Moreover, developing CPL materials based on supramolecular gels is of great significance, due to their special advantages and important applications. Herein, we report the first circularly polarized supramolecular gels self-assembled exclusively from a simple achiral C 3-symmetric molecule. Most importantly, the excellent tunability of these novel CPL materials, which benefits from achiral molecular building blocks as well as the nature of supramolecular gels, has been investigated. Thus, the CPL intensity of these supramolecular gels is easily enhanced by mechanical stirring or doping chiral amines. The handedness of CPL signals is controlled by the chirality of organic amines.  相似文献   

12.
A double hydrogen bonding (DHB) hydrogel is constructed by copolymerization of 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine (hydrophobic hydrogen bonding monomer) and N,N‐dimethylacrylamide (hydrophilic hydrogen bonding monomer) with polyethylene glycol diacrylates. The DHB hydrogels demonstrate tunable robust mechanical properties by varying the ratio of hydrogen bonding monomer or crosslinker. Importantly, because of synergistic energy dissipating mechanism of strong diaminotriazine (DAT) hydrogen bonding and weak amide hydrogen bonding, the DHB hydrogels exhibit high toughness (up to 2.32 kJ m−2), meanwhile maintaining 0.7 MPa tensile strength, 130% elongation at break, and 8.3 MPa compressive strength. Moreover, rehydration can help to recover the mechanical properties of the cyclic loaded–unloaded gels. Attractively, the DHB hydrogels are responsive to CO2 in water, and demonstrate unprecedented CO2‐triggered shape memory behavior owing to the reversible destruction and reconstruction of DAT hydrogen bonding upon passing and degassing CO2 without introducing external acid. The CO2 triggering mechanism may point out a new approach to fabricate shape memory hydrogels.  相似文献   

13.
The textures of silica gels made by two-step acid/base and acid/acid catalysis of TEOS have been examined by thermoporometry (TPM) and NMR, and their permeabilities (D) have been measured by a thermal expansion technique. Using the pore size distribution given by TPM, which includes a large proportion of macropores (30 nm), calculated values of D are seriously overestimated. We conclude that, consistent with a theoretical prediction, compliant materials such as gels undergo contraction during freezing in the calorimeter, so that most of the macropore volume reported by TPM is actually extracted from mesopores. The mesopore radius reported by TPM is underestimated by only 20%, even if 50% of the pore liquid is drained during crystallization, assuming that the change in pore radius is related to the cube root of the volume change. NMR does not distinguish macropores, because of diffusional averaging, but provides an apparent distribution that permits an accurate estimate of the permeability.  相似文献   

14.
The kinetics of the droplet formation during the spinodal decomposition (SD) of the homopolymer blends has been studied by numerical integration of the Cahn‐Hilliard‐Cook equation. We have found that the droplet formation and growth occurs when the minority phase volume fraction, fm , approaches the percolation threshold value, fthr = 0.3 ± 0.01. The time for the formation of the disperse droplet morphology (coarsening time) depends only on the equilibrium minority phase volume fraction, fm . fm approaches its equilibrium value logarithmically at the late SD stages, and, therefore, the coarsening time decreases exponentially as the average volume fraction or the quench depth decrease. Since the temporal evolution of the total interfacial area does not depend on the quench conditions and blend morphology, the average droplet size and the droplet number density is determined by the coarsening time. Within the time scale studied, the droplet number density decreases with time as t –0.63±0.03; the average mean curvature decreases as t –0.35±0.05; the average Gaussian curvature decreases as t –0.42±0.03, and the average droplet compactness ˜V/S3/2 where S is the surface area and V is the volume) approaches a spherical limit logarithmically with time. The droplets with larger area have lower compactness and in the low compactness limit their area is a parabolic function of compactness. The size and shape distribution functions have been also investigated.  相似文献   

15.
A high molecular weight polydimethylsiloxane, PDMS, gel was prepared and investigated as an electroactive polymer actuator. Electromechanical properties of the PDMS gels were measured under an oscillatory shear mode at the temperature of 27 °C to determine the effects of crosslink ratio and electric field strength. The storage modulus, G′, of PDMS gel increases linearly with crosslink density but nonlinearly with electric field. The increase in the storage modulus with crosslink density is due to the increase in the number of junction points and strands. With increasing electric field strength, the storage modulus increases as the electric field induces dipole moments generating the electrostatic forces within the matrices. The gel with the crosslink ratio of 0.01 possesses the highest G′ sensitivity of 41% at 2 kV/mm. The temporal response of PDMS gels upon repeated applications of electric field strength of 2 kV/mm was investigated. For the crosslink PDMS (Nc/Nm = 0.01) system, at the electric field of 2 kV/mm, G′ immediately increases and rapidly reaches a steady-state value. With electric field off, G′ decreases and nearly recovers its original value. The crosslinked PDMS (Nc/Nm = 0.01) is nearly a reversible system. Finally, we investigated the bending response of the PDMS films, suspended in silicone oil between copper electrodes. From the deformation data, we estimated the dielectrophoresis force, FD, to be a linear function of electric field strength.  相似文献   

16.
Novel chiral swallow-tailed amide materials, N,N-dipropyl-(S)-2-{6-[4-(4-alkoxyphenyl)benzoyloxy]-2-naphthyl}propionamides, DPmPBNPA (m=9-13), have been designed and synthesized for the investigation of mesomorphic properties. The materials DPmPBNPA (m=9-11) display a monotropic phase sequence of I-SmA*-SmCA*-Cr. The antiferroelectric SmCA* phase for the materials was characterized by microscopic texture, switching behaviour, dielectric permitivity and electro-optical response. The measured maximum P s values in the SmCA* phase of the materials are in the range 80–87 nC cm-2.  相似文献   

17.
Polyurethane (PU) and polyurethane acrylate (PUA) networks based on hydroxyl-terminated polycaprolactone (PCL), 1,3-bis-2,2′(2-isocyanatopropyl)benzene (m-TMXDI), trimethylolpropane (TMP) for PU or hydroxyethyl methacrylate (HEMA) for PUA were synthesized. Glass transition temperature, Tg, dynamic mechanical relaxation, α, and equilibrium tensile modulus, E′, were measured to compare the two kinds of networks. To explain thermal and mechanical properties of networks, the concept of hard clusters has been introduced. PU networks exhibit a single-phase structure with modulus and Tg dependent on the concentration of elastically active network chains (EANC) per unit volume calculated by considering hard crosslink clusters. The rigidity of the clusters comes from small diisocyanate and trimethylolpropane units connected by urethane bonds. They are embedded in a continuous soft phase of macrodiol urethane. Physical equivalence between several kinds of network models has been demonstrated for full conversion of isocyanate-alcohol reaction. PUA networks exhibit thermodynamically one-phase structures that become a two-phase structure for high molar mass of macrodiol when the molar fraction of isocyanate groups increases. For those networks, the calculated modulus considering clusters based on polyacrylate chains seems to be a good way to approach the experimental value of the equilibrium modulus. For the same molar ratio of OH to NCO groups the range of dynamic moduli is larger for PUA than for PU. This difference can be explained by a different concentration of crosslinks in the networks. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Stress relaxation of commercial poly(vinyl chloride) (PVC) is measured at strains below 3% and at different temperatures below the glass transition temperature. First it is shown that below the yield point the material follows a linear viscoelastic behavior. Then the data at a fixed deformation level (0.03) are fitted by considering a lognormal distribution function of relaxation times. Furthermore, from the measured stress-strain curves, the temperature dependence of the elastic tensile modulus is determined. The temperature dependence of the elastic modulus, the relaxation strength, and the parameters of the distribution: mean relaxation time, τm, and half-width, β, are given. Moreover, the distribution function and the temperature dependence of its characteristic parameters are discussed in terms of a cooperative model of the mechanisms involved in the mechanical relaxation of glassy polymers. Finally, the relationship proposed between the tensile modulus and the free volume helps explain the temperature dependence of the relaxation strength. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Mechanical behaviour of nano composite aerogels   总被引:1,自引:0,他引:1  
In order to improve the mechanical properties of silica aerogels, we propose the synthesis of nano composite aerogels. Silica particles (20–100 nm) are added in the monomer solution, just before gelling and supercritical drying. The silica particles addition increases the mechanical properties, but also affects the aggregation process, the aerogel structure and the pore sizes. We discuss the different parameters which infer in the mechanical behaviour of silica aerogel such as: brittle behaviour, load bearing fraction of solid (pore volume), internal stresses (shrinkage), size and distribution of flaws, subcritical flaws propagation (chemical susceptibility). With silica particles addition, the mechanical properties rapidly increase, stiffening and strengthening the structure by a factor 4–8. Moreover, the mechanical strength distribution and the Weibull modulus characterizing the statistical nature of flaws size in brittle materials show a more homogeneous strength distribution. The composite structure is made of two imbricate networks, the polymeric silica and the particles silica networks. Ultra Small Angle X-ray Scattering experiments show that besides the fractal network usually built up by the organosiloxane, the silica particles is forming another fractal structure at a higher scale. The fractal structure could be related to the low Weibull parameter characteristic of a large flaws size distribution, pores being the critical flaws.  相似文献   

20.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene-2,6-naphthalene dicarboxylate) (PEN) were obtained by coprecipitation from solution followed by melt-pressing for different timest mand quenching in iced water. When the melt-pressing time was 0.2 and 0.5 min, two glass transition temperaturesT gwere observed by means of dynamic mechanical analysis (DMA), indicating that there are two phases present, a PEN-rich phase and a PET-rich phase. The differential scanning calorimetry (DSC) curves show two crystallization peaks and two melting peaks which, according to wide-angle x-ray scattering (WAXS) measurements, can be attributed to PET and PEN, respectively. In the case oft m=2 min or longer, a single value ofT gand thus a single phase is found to exist. Fort m=10 min and 45 min no crystallization and melting at all is observed during heating with 10°C/min, indicating that a copolyester of PET and PEN has been formed by transesterfication during melt-pressing.Time-resolved WAXS measurements during isothermal crystallization show that, in the blend, the half-time of crystallization of PET is different from that of PEN, and not the same as that which is found in the pure polymer.Dedicated with best wishes to Prof. Dr. E.W. Fischer on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号