首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
糖和盐类物质对生物膜超分子结构稳定性影响的研究   总被引:1,自引:0,他引:1  
张静  孙润广 《化学学报》2006,64(19):1993-2002
用原子力显微镜(AFM)和小角X射线(SAXS)技术, 研究了NaCl、KCl、胆固醇、葡萄糖和蔗糖等与膜脂的相互作用. 研究发现它们能引起脂质膜超分子体系液晶态结构的变化. 葡萄糖和蔗糖对脂双层膜结构有稳定作用. 在NaCl溶液中制成的脂质膜, 随着NaCl浓度的增加, 它们的双层膜更稳定. 在KCl溶液中结果恰好相反. AFM研究发现液晶态脂双层膜结构与双亲性分子的结构、浓度以及介质的组分和pH等因素有关. 在1,2-反十八碳-3-磷脂酰乙醇胺(DEPE)液晶态中, 钠盐诱导形成Q229(Im3m)立方相. 油酸的含量对DEPE-PVP(聚乙烯吡咯烷酮)超分子结构也有一定的影响, 当油酸含量达到某一临界值时, 则发生从Im3m(Q229)到Pn3m(Q224)的转变. 胆固醇能促使形成Pn3m(Q224)和六角相HII共存相. 研究结果表明, 生物膜超分子聚集体的氢键、分子van der Waals力、离子的静电力等这些弱相互作用的协同性、方向性和选择性, 可能决定着生物膜的结构和功能.  相似文献   

2.
This work describes the effect of two different surfactants on the internal nanostructure of the kinetically stabilized isasomes (internally self-assembled particles or "somes"), which are a new family of colloidal particles (cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions, EME). The stabilization of these systems is performed by using the polymeric stabilizer F127. We demonstrate that the internal structure of these oil-free and oil-loaded dispersed particles can be modulated by varying the lipid composition. To achieve this goal, we replaced part of our primary lipid monolinolein (MLO) with diglycerol monooleate (DGMO) or soybean phosphatidylcholine (PC). We found that DGMO has a counter effect to that of tetradecane (TC) and allows us to tune back the self-assembled nanostructure in the TC-loaded dispersions from H2 (hexosomes) to Im3m (cubosomes). Although TC has a higher impact on confined structures than does DGMO, we demonstrate that the addition of DGMO significantly affects the internal structure of the TC-solubilized dispersions and favors the formation of large water channels. PC can also be used to modify the internal structure for MLO-based systems. It is somehow different from DGMO due to the fact that the fully hydrated Pn3m cubic structure in the presence of PC for the TC-free dispersion is preserved after dispersing. The results also indicate that PC is less effective than DGMO for tuning back the TC-loaded internal structure from H2 to cubic phase, in which it makes the confined structure less ordered. In addition, we found that DGMO has a significant effect on the internal structure of isasomes. It increases the water solubilization capacity for dispersed and nondispersed bulk phases. In contrast to the MLO-based dispersions, the present results indicate that F127 plays an important role in the internal structure of these dispersions due to its penetration into the oil-free cubic phase changing the symmetry from Pn3m to Im3m.  相似文献   

3.
Small-angle X-ray-scattering, light-scattering, and electron microscope experiments were used to determine the phase transitions of colloidal lipid A-diphosphate aqueous dispersions. The phases detected were a correlated liquid phase, a face-centered cubic (Fd3m) and a body-centered cubic (Im3m) colloidal crystal phase and a new glass phase. These experimentally determined phases were shown to be in accord with theoretically predicted equilibrium phases.  相似文献   

4.
The aqueous phase behavior of phytantriol (PT) in mixtures of monoolein (MO), distearoylphosphatidylglycerol (DSPG), propylene glycol (PG), polyethylene glycol 400 (PEG 400) and 2-methyl-2,4-pentanediol (MPD) was investigated by visual inspection, polarized light microscopy and small angle X-ray diffraction at room temperature. The phase diagrams of PT and MO in water are qualitatively very similar and PT/MO mixtures in excess water form one cubic phase of space group Pn3m irrespective of mixing ratio. The addition of the charged membrane lipid DSPG to the PT system gives rise to a considerable water swelling of the cubic phases as well as the occurrence of a cubic phase of space group Im3m. Whereas all three solvents studied give rise to a sponge (L3) phase in the MO-water system, this phase was only found when MPD was added to the PT-water system. The results are discussed with respect to the chemical differences between PT and MO.  相似文献   

5.
In our recent work, we reported on the effect of varying temperature and solubilizing tetradecane (TC) on the structural transitions observed in dispersed particles based on the monolinolein (MLO)-water-TC system. At a given temperature, the addition of TC induces a transition of the internal structure from the bicontinuous cubic phase, Pn3m, to the reversed hexagonal, H2, and to the isotropic liquid phase (water-in-oil (W/O) microemulsions). Our present study focuses on the discovery of a Fd3m phase (reversed discontinuous micellar cubic), which is formed in the MLO-water-TC system at a specific TC/MLO weight ratio. It is situated between the H2 and the isotropic liquid phase (W/O microemulsion). Remarkably, it is not found in the absence of TC by increasing the temperature. The Fd3m structure was investigated in detail by means of small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The present work proves that the structural transformation in the dispersed particles from H2 (hexosomes) to the W/O microemulsion system (emulsified microemulsion (EME)) is indirect and it occurs gradually via an emulsified intermediate phase. Specifically, in addition to the nanostructured aqueous dispersions described above, we present new TC-loaded aqueous dispersions with a confined intermediate phase, which is a discontinuous micellar cubic phase of the symmetry Fd3m. We denoted this type of emulsified particles as "micellar cubosomes".  相似文献   

6.
We investigated the effect of incorporation of a small aqueous peripheral membrane protein (cyt c) into the three-dimensional periodic nanochannel structures formed by the lipid monoolein (MO) on its rich phase behavior as a function of temperature, pressure, and protein concentration using synchrotron X-ray small-angle diffraction. By simultaneous use of the pressure-jump relaxation technique and time-resolved synchrotron X-ray diffraction, we also studied the kinetics of various lipid mesophase transformations of the system for understanding the mechanistic pathways of their formation influenced by the protein-lipid interactions. Cyt c incorporated into the bicontinuous cubic phase Ia3d of MO has a significant effect on the lipid structure and the pressure stability of the system already at low protein concentrations. Concentrations higher than 0.2 wt % of cyt c led to an increase in interfacial curvature due to interaction of the protein with the lipid headgroups. This promotes the formation of a new, probably partially micellar cubic phase of crystallographic space group P4(3)32. Upon pressurization, the P4(3)32 phase undergoes a phase transition to a cubic Pn3m phase with smaller partial specific volume. Increase in protein concentration increases the pressure stability of the P4(3)32 phase. The formation of this phase from the cubic phase Pn3m is a slow process taking many seconds and having a time lag in the beginning. It seems to occur as a two-state process without ordered intermediate states. At temperatures above 60 degrees C, the P4(3)32 phase is unable to accommodate the unfolded protein and transforms to a bicontinuous cubic Ia3d phase. Time-resolved small-angle X-ray scattering studies show that the L(alpha) --> Ia3d transition in pure MO dispersions under limited hydration conditions occurs within a time interval of 1 s at 35 degrees C preceded by a lag phase of 1.5 s. The Ia3d cubic phase initially forms with a much larger lattice constant due to hydration and experiences an initially lower curvature that relaxes within about 1 s. Interestingly, no other cubic phases are involved as intermediates in the transition, i.e., the gyroid cubic phase is able to form directly from the L(alpha) phase. The mechanism behind the L(alpha) --> Ia3d transition in pure MO dispersions has been discussed within the framework of recent stalk models for membrane fusion. In the presence of cyt c, the L(alpha) --> Ia3d transition is much slower. The rather long relaxation times of the order of seconds are probably due to a kinetic trapping of the system and limitation by the transport and redistribution of water and lipid in the evolving new lipid phases. We also studied the transition from the pure lamellar L(alpha) phase to the Ia3d-P4(3)32 two phase region and observed a rather complex transition behavior with transient lamellar and cubic intermediate states.  相似文献   

7.
This report details the structural characterization and the in vitro drug-release properties of different local anesthetic bupivacaine (BUP)-loaded inverted-type liquid crystalline phases and microemulsions. The effects of variations in the lipid composition and/or BUP concentration on the self-assembled nanostructures were investigated in the presence of the commercial distilled glycerol monooleate Myverol 18-99K (GMO) and medium-chain triglycerides (MCT). Synchrotron small-angle X-ray scattering (SAXS) and rotating dialysis cell model were used to characterize the BUP formulations and to investigate the in vitro BUP release profiles, respectively. The evaluation of SAXS data for the BUP-loaded GMO/MCT formulations indicates the structural transition of inverted-type bicontinuous cubic phase of the symmetry Pn3m → inverted-type hexagonal (H(2)) phase → inverted-type microemulsion (L(2)) with increasing MCT content (0-40 wt %). In the absence of MCT, the solubilization of BUP induces the transition of Pn3m → H(2) at pH 7.4; whereas a transition of Pn3m → (Pn3m + H(2)) is detected as the hydration is achieved at pH 6.0. To mimic the drug release and transport from in situ formed self-assembled systems after subcutaneous administration, the release experiments were performed by injecting low viscous stimulus-responsive precursors to a buffer in the dialysis cell leaving the surface area between the self-assembled system and the release medium variable. Our results suggest that the pH-dependent variations in the lipidic partition coefficient, K(l/w), between the liquid crystalline nanostructures and the surrounding buffer solution are significantly affecting BUP release rates. Thus, a first step toward understanding of the drug-release mechanism of this drug-delivery class has been undertaken tackling the influence of drug ionization as well as the type of the self-assembled nanostructure and its release kinetics under pharmaceutically relevant conditions.  相似文献   

8.
Lipid liquid crystalline nanoparticles such as cubosomes and hexosomes have unique internal nanostructures that have shown great potential in drug and nutrient delivery applications. The triblock copolymer, Pluronic F127, is usually employed as a steric stabilizer in dispersions of lipid nanostructured particles. In this study, we investigated the formation, colloidal stability and internal nanostructure and morphology of glyceryl monooleate (GMO) and phytantriol (PHYT) cubosome dispersions on substituting β-casein with F127 in increasing proportion as the stabilizer. Internal structure and particle morphology were evaluated using small-angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM), while protein secondary structure was studied using synchrotron radiation circular dichroism (SRCD). The GMO cubosome dispersion stabilized by β-casein alone displayed a V(2) (Pn3m) phase structure and a V(2) to H(2) phase transition at 60 °C. In comparison, F127-stabilized GMO dispersion had a V(2) (Im3m) phase structure and the H(2) phase only appeared at higher temperature, that is, 70 °C. In the case of PHYT dispersions, only the V(2) (Pn3m) phase structure was observed irrespective of the type and concentration of stabilizers. However, β-casein-stabilized PHYT dispersion displayed a V(2) to H(2) to L(2) transition behavior upon heating, whereas F127-stabilized PHYT dispersion displayed only a direct V(2) to L(2) transition. The protein secondary structure was not disturbed by interaction with GMO or PHYT cubosomes. The results demonstrate that β-casein provides steric stabilization to dispersions of lipid nanostructured particles and avoids the transition to Im3m structure in GMO cubosomes, but also favors the formation of the H(2) phase, which has implications in drug formulation and delivery applications.  相似文献   

9.
We have investigated the microstructure and phase behavior of monoglyceride-based lyotropic liquid crystals in the presence of hydrophilic silica colloidal particles of size comparable to or slightly exceeding the repeat units of the different liquid crystalline phases. Using small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC), we compare the structural properties of the neat mesophases with those of the systems containing silica colloidal particles. It is found that the colloidal particles always macrophase separate in inverse bicontinuous cubic phases of gyroid (Ia3d) and double diamond (Pn3m) symmetries. SAXS data for the inverse columnar hexagonal phase (H(II)) and lamellar phase (L(α)) suggest that a low volume fraction of the nanoparticles can be accommodated within the mesophases, but that at concentrations above a given threshold, the particles do macrophase separate also in these systems. The behavior is interpreted in terms of the enthalpic and entropic interactions of the nanoparticles with the lamellar and hexagonal phases, and we propose that, in the low concentration limit, the nanoparticles are acting as point defects within the mesophases and, upon further increase in concentration, initiate nucleation of nanoparticles clusters, leading to a macroscopic phase separation.  相似文献   

10.
Metal cations (Mn(2+) or Ca(2+)) in aqueous dispersions of mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-functionalized DOPE (DOPE-PEG(350)) induce, above a certain amount of the PEG lipid component, a phase transition from the inverted hexagonal phase H(II) to the bicontinuous inverted cubic phase Q(224) with space group Pn3m. The process is driven by the decrease of free elastic energy due to the Gaussian curvature of the cubic phase. The structural characterization of the phase behavior over the whole explored range of DOPE-PEG/DOPE weight ratio (3-25%) is reported, focusing on the role of the metal cation in the formation of the 3D cubic lattice. This result may represent a significant progress toward a design-based approach to drug delivery.  相似文献   

11.
The encapsulation and release of peptides, proteins, nucleic acids, and drugs in nanostructured lipid carriers depend on the type of the self-assembled liquid-crystalline organization and the structural dimensions of the aqueous and membraneous compartments, which can be tuned by the multicomponent composition of the systems. In this work, small-angle X-ray scattering (SAXS) investigation is performed on the 'melting' transition of the bicontinuous double diamond cubic phase, formed by pure glycerol monooleate (MO), upon progressive inclusion of varying fractions of pharmaceutical-grade glycerol monooleate (GO) in the hydrated system. The self-assembled MO/GO mixtures are found to form diamond (Pn3m) inverted cubic, inverted hexagonal (H(II)), and sponge (L(3)) phases at ambient temperature in excess of aqueous medium without heat treatment. Mixing of the inverted-cubic-phase-forming MO and the sponge-phase-forming GO components, in equivalent proportions (50/50 w/w), yields an inverted hexagonal (H(II)) phase nanostructured carrier. Scattering models are applied for fitting of the experimental SAXS patterns and identification of the structural changes in the aqueous and lipid bilayer subcompartments. The possibility of transforming, at ambient temperature (20 °C), the bicontinuous cubic nanostructures into inverted hexagonal (H(II)) or sponge (L(3)) mesophases may facilitate novel biomedical applications of the investigated liquid crystalline self-assemblies.  相似文献   

12.
Porous hydrogels such as agarose are commonly used to analyze DNA and water-soluble proteins by electrophoresis. However, the hydrophilic environment of these gels is not suitable for separation of important amphiphilic molecules such as native membrane proteins. We show that an amphiphilic liquid crystal of the lipid monoolein and water can be used as a medium for electrophoresis of amphiphilic molecules. In fact, both membrane-bound fluorescent probes and water-soluble oligonucleotides can migrate through the same bicontinuous cubic crystal because both the lipid membrane and the aqueous phase are continuous. Both types of analytes exhibit a field-independent electrophoretic mobility, which suggests that the lipid crystal structure is not perturbed by their migration. Diffusion studies with four membrane probes indicate that membrane-bound analytes experience a friction in the cubic phase that increases with increasing size of the hydrophilic headgroup, while the size of the membrane-anchoring part has comparatively small effect on the retardation.  相似文献   

13.
By the method of chemical condensation a stable aqueous colloidal solution of nanoparticles of cadmium sulfide was obtained. The solution obtained in the daylight had a bright lemon-yellow color. For the temporary stabilization of the solution was used an organic complexone, disodium ethylenediaminetetraacetate (EDTA), that prevented coagulation of colloidal particles up to several months at 4°C. At room temperature, the solution remained stable during a month. The structure and properties of the disperse phase were studied by the X-ray diffraction, optical fluorescence, and electron microscopy. The solid particles size is about 3 nm, they have a disordered close-packed structure with the space group P6mm and possess the photoluminescence color from green to orange depending on the duration of keeping the solution. The size of coagulates was 10 nm, 100 nm, and 1 μm after keeping for 1, 2, and 4 months, respectively.  相似文献   

14.
Semiconductor colloidal quantum dots (QDs) are promising fluorescent probes for biology. Initially synthesized in organic solvents, they can be dispersed in aqueous solution by noncovalent coating with amphiphilic macromolecules, which renders the particles hydrophilic and modifies their interactions with other biological compounds. Here, after coating QDs with an alkyl-modified polyacrilic acid, we investigated their colloidal properties in aqueous buffers by electrophoresis, electron microscopy, light scattering, and rate zonal centrifugation. Despite polymer dispersity and variation of the size of the inorganic nanoparticles, the polymer-dot complexes appeared relatively well-defined in terms of hydrodynamic radius and surface charge. Our data show that these complexes contain isolated QD surrounded by a polymer layer with thickness 8-10 nm. We then analyzed their interaction with giant unilamellar vesicles, either neutral or cationic, by optical microscopy. At neutral pH, we found the absence of binding of the coated particles to lipid membrane, irrespective of their lipid composition. An abrupt surface aggregation of the nanoparticles on the lipid membrane was observed in a narrow pH range (6.0-6.2), indicative of critical binding triggered by polymer properties. The overall features of QDs coated with amphiphilic polymers open the route to using these nanoparticles in vivo as optically stable probes with switchable properties.  相似文献   

15.
Aqueous dispersions of colloidal aggregates of liquid-crystalline lipid-water phases are described. The lamellar liquid-crystalline phase can form liposomal dispersions, which are wellknown from extensive studies of these particles in drug delivery. Less is known about dispersions of cubic and hexagonal phases. The preparation of such colloidal dispersions, their structure and physical properties are summerised. The dispersed cubic phase is compared to liposomal dispersions, and it is concluded that an important application of the cubic particles will involve encapsulation of proteins and protection of their native conformation.  相似文献   

16.
The replication of amphiphilic systems within an inorganic silica matrix allows the study of the fundamental properties of mesostructural changes, that is, kinetic and structural parameters. Herein we report a detailed study of the transition between cubic bicontinuous mesostructure with space groups Ia$\bar 3The replication of amphiphilic systems within an inorganic silica matrix allows the study of the fundamental properties of mesostructural changes, that is, kinetic and structural parameters. Herein we report a detailed study of the transition between cubic bicontinuous mesostructure with space groups Ia ?3d and Pn ?3m symmetry, which are associated with the minimal G and D surfaces, respectively. The transition may be induced through micellar swelling of the anionic amphiphilic surfactant N-lauroyl alanine by trimethylbenzene. Rich kinetic behaviour is observed and has been exploited to prepare particles with biphasic structures. Transmission electron microscopy evidence indicates that there is epitaxial growth from one mesostructure to the other involving the [111] and [110] orientations of the Ia ?3d and Pn ?3m symmetry structures, respectively. From kinetic studies, we show that the formation of the Ia ?3d mesophase is preceded by a hexagonal phase (plane group p6mm) and an epitaxial relationship has been observed involving the sixfold or ?3 axis orientations of both structures. Our data suggests that the Pn ?3m mesostructure is kinetically stable at low temperatures whereas the Ia ?3d mesostructure is the more stable structure after prolonged periods of hydrothermal treatment. We present evidence from transmission electron microscopy and small-angle X-ray diffractograms and also electron crystallography modelling of the unit cells at particular points in the structural change.  相似文献   

17.
In the present study we demonstrate that a bulk inverse micellar cubic phase of Fd3m structure can be obtained by adding a hydrophobic component, such as the food-grade limonene, to the binary system monolinolein/water in a well-defined composition. The Fd3m structure studied in this work had a very slow kinetics of formation, as a consequence of partitioning of water into two types of micelle populations with different sizes. The Fd3m structure formed at a ratio of limonene oil to total lipids of alpha = 0.4 is stable in the bulk up to a maximum hydration of 12.68 wt % water, beyond which it starts to coexist with dispersed water. At full hydration, by combining small-angle X-ray scattering and available topological models, the inverse micellar cubic phase of Fd3m structure was shown to be formed by 16 small micelles and 8 larger micelles per cubic lattice cell (Q227 group), with radii of the micellar polar cores ranging between 1 and 3 nm and 149-168 monolinolein molecules per micelle depending on the water content. The temperature dependence of the structural and rheological properties of the Fd3m mesophase was investigated using SAXS, rheology, and turbidimetry. It appeared that the Fd3m phase underwent crystallization below 18 degrees C and began melting in an inverse microemulsion (L2 phase) coexisting with water above 28.5 degrees C with complete melting obtained at 40-45 degrees C, as evidenced by SAXS and rheology. Macroscopic phase separation between the L2 phase and excess water was observed with time at higher temperatures. The investigation of the viscoelastic properties of the Fd3m inverse discrete micellar cubic phase revealed a rheological signature similar to that of the bicontinuous cubic phases Pn3m and Ia3d observed in homologous binary systems. However, the Fd3m phase presented a complex set of slower relaxation mechanisms leading to a shift by 1 order of magnitude of the dominant relaxation times and whole relaxation spectrum, as compared to those of inverse bicontinuous cubic phases. These findings have been tentatively explained by (i) the multiple relaxation of micelles upon deformation, (ii) the small hydration level of the Fd3m phase, and (iii) the low temperature at which this phase can be observed.  相似文献   

18.
Self-assembled nanostructures, such as inverted type mesophases of the cubic or hexagonal geometry or reverse microemulsion phases, can be dispersed using a polymeric stabilizer, such as the PEO-PPO-PEO triblock copolymer Pluronic F127. The particles, which are described in the present study, are based on monolinolein (MLO)-water mixtures. When adding tetradecane (TC) to the MLO-water-F127 system at constant temperature, the internal nanostructure of the kinetically stabilized particles transforms from a Pn3m (cubosomes) to a H2 (hexosomes) and to a water-in-oil (W/O, L2) microemulsion phase (emulsified microemulsion (EME)). To our knowledge, this is the first time that the formation of stable emulsified microemulsion (EME) systems has been described and proven to exist even at room temperature. The same structural transitions can also be induced by increasing temperature at constant tetradecane content. The internal nanostructure of the emulsified particles is probed using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). At each investigated composition and temperature, the internal structure of the dispersions is observed to be identical to the corresponding structure of the nondispersed, fully hydrated bulk phase. This is clear evidence for the fact that the self-assembled inner particle nanostructure is preserved during the dispersion procedure. In addition, the internal structure of the particles is in thermodynamic equilibrium with the surrounding water phase. The internal structure of the dispersed, kinetically stabilized particles is a "real" and stable self-assembled nanostructure. To emphasize this fact, we denoted this new family of colloidal particles (cubosomes, hexosomes, and EMEs) as "ISASOMES" (internally self-assembled particles or "somes").  相似文献   

19.
The colloidal stability of TiO2 dispersions in aqueous solutions was studied. Aqueous solutions of ATLAS G-3300 (1.57 x 10(-3) mol/l), TRITON X-100 (5 x 10(-5) mol/l), and PMAA (4 x 10(-6) and 5.81 x 10(-3) mol/l) have been used as medium for redispergation of TiO2 particles. Stability of dispersions was investigated at different pH values by two different methods. By using analytical centrifuge the sedimentation velocity of TiO2 particles was directly measured and by means of light scattering the particle size of dispersed particles has been monitored. Combination of these two methods allowed determination of the aggregation degree of TiO2 particles as well as structure of the aggregates formed in aqueous phase. It has been found that redispergation process does not provide complete separation of virgin TiO2 particles. Even in the case of stable dispersions some aggregates were found, which consisted of 2-4 virgin TiO2 particles. With increasing colloidal stability of dispersions aggregates appear to be spherically shaped. In the system where TRITON X-100 was used, formation of secondary aggregates by fusion of primary ones was observed.  相似文献   

20.
We developed a method that enables differentiation between liquid crystalline-phase particles corresponding to different space groups. It consists of controlled tilting of the specimen to observe different orientations of the same particle using cryogenic transmission electron microscopy. This leads to the visualization of lattice planes (or reflections) that are present for a given structure and absent for the other one(s) and that give information on liquid crystalline structures and their space groups. In particular, we show that we can unambiguously distinguish among particles having the inverted micellar cubic (space group Fd(3)m, 227), the inverted bicontinuous gyroid (space group Ia(3)d, 230), the inverted bicontinuous diamond (space group Pn(3)m, 224), and the inverted bicontinuous primitive cubic structure (space group Im(3)m, 229).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号