首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zinc atom has a distorted octahedral geometry defined by two 1,10‐phenanthroline and two cis water molecules. A three‐dimensional network structure arises owing to extensive hydrogen bonds involving all the components of [Zn(phen)2(H2O)2][C6H2(OH)2(SO3)2]·3H2O. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The structure of {[Zn(O2CC6H4NO2m)(1,10‐phenanthroline)2]O2CC6H4NO2m}·2H2O·HO2CC6H4NO2m features chelating m‐nitrobenzoate and 1,10‐phenanthroline ligands so that a distorted octahedron N4O2 coordination geometry results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The monomeric title compound features a distorted octahedral tin (IV) centre within a C2Cl2N2 donor set with two cis Cl atoms and two trans benzyl groups. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The lead atom in Pb(phen)(IA)2 is in a heavily distorted square pyramidal geometry surrounded by an N2O3 donor set with Pb? O distances ranging from 2.354(5) to 2.726(5) Å. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The structure of Cd(phen)(indole‐3‐acetato)2 has twofold symmetry and features a six‐coordinated distorted octahedral geometry around cadmium(II), defined by an N2O4 donor set, with Cd–O distances ranging from 2.214(3) to 2.526(3) Å. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The mononuclear structure of Zn(S2CN(CH2)4)2(4,7‐Ph2‐1,10‐phenanthroline) shows the zinc atom in each of the two independent molecules comprising the asymmetric unit to exist in a distorted octahedral geometry defined by an N2S4 donor set. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   

8.
The double‐chain coordination polymer, {[Zn(H2O)6][Zn(bbtc)H2O]·4H2O}n (bbtc = 3,3′, 4,4′‐benzophenonetetracarboxylate), features two kinds of zinc center. One is octahedrally coordinated by six aqua ligands and the other is coordinated by four carboxylate oxygen atoms, derived from three bbtc ligands, and a water molecule, forming a geometry intermediate between square‐pyramidal and trigonal bipyramidal. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The centrosymmetric [Zn2{CH3OC6H4P(OC5H9)S2}4], features an eight‐membered Zn2S4P2 ring as a result of two bidentate bridging thiolate ligands; the remaining ligands are chelating. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The mononuclear structure of Zn(S2C(N(CH2)2)4)2(2,9‐Me2‐1,10‐phen) shows monodentate coordination by the dithiocarbamate ligands and a distorted tetrahedral geometry for zinc, defined by an N2S2 donor set, results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The structure of Bi(S2CNC5H10)2(NO3)(1,10‐Phen) features an eight‐coordinated distorted square antiprismatic geometry around bismuth, defined by an N2O2S4 donor set, with Bi? S distances ranging from 2.641(2) to 2.824(2) Å. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The cation in the title compound has crystallographic threefold symmetry. The zinc atom is in a distorted octahedral geometry, being coordinated by three nitrogen atoms of the imine and three nitrogen atoms of imidazole. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

14.
In mononuclear [Zn(C10H9N3)2(N3)2]·H2O, the zinc atom has an approximate octahedral geometry, coordinated with four pyridyl nitrogen atoms derived from two bis(2‐pyridyl)amine molecules and two terminal nitrogen donors of the azide anions. Hydrogen‐bonding interactions extend this structure to form a double‐layer architecture. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Reactions of 1,10‐phenanthroline (phen) and 2‐(3,4‐dichlorophenyl)acetic acid (dcaH) with Mn(CO3) (M = LiI, NaI and MgII; n = 1 and 2) in MeOH yield the mononuclear lithium complex aqua[2‐(3,4‐dichlorophenyl)acetato‐κO](1,10‐phenanthroline‐κ2N,N′)lithium(I), [Li(C8H5Cl2O2)(C12H8N2)(H2O)] or [Li(dca)(phen)(H2O)] ( 1 ), the dinuclear sodium complex di‐μ‐aqua‐bis{[2‐(3,4‐dichlorophenyl)acetato‐κO](1,10‐phenanthroline‐κ2N,N′)sodium(I)}, [Na2(C8H5Cl2O2)2(C12H8N2)2(H2O)2] or [Na2(dca)2(phen)2(H2O)2] ( 2 ), and the one‐dimensional chain magnesium complex catena‐poly[[[diaqua(1,10‐phenanthroline‐κ2N,N′)magnesium]‐μ‐2‐(3,4‐dichlorophenyl)acetato‐κ2O:O′] 2‐(3,4‐dichlorophenyl)acetate monohydrate], {[Mg(C8H5Cl2O2)(C12H8N2)(H2O)2](C8H5Cl2O2)·H2O}n or {[Mg(dca)(phen)(H2O)2](dca)·H2O}n ( 3 ). In these complexes, phen binds via an N,N′‐chelate pocket, while the deprotonated dca? ligands coordinate either in a monodentate (in 1 and 2 ) or bidentate (in 3 ) fashion. The remaining coordination sites around the metal ions are occupied by water molecules in all three complexes. Complex 1 crystallizes in the triclinic space group P with one molecule in the asymmetric unit. The Li+ ion adopts a four‐coordinated distorted seesaw geometry comprising an [N2O2] donor set. Complex 2 crystallizes in the triclinic space group P with half a molecule in the asymmetric unit, in which the Na+ ion adopts a five‐coordinated distorted spherical square‐pyramidal geometry, with an [N2O3] donor set. Complex 3 crystallizes in the orthorhombic space group P212121, with one Mg2+ ion, one phen ligand, two dca? ligands and three water molecules in the asymmetric unit. Both dcaH ligands are deprotonated, however, one dca? anion is not coordinated, whereas the second dca? anion coordinates in a bidentate fashion bridging two Mg2+ ions, resulting in a one‐dimensional chain structure for 3 . The Mg2+ ion adopts a distorted octahedral geometry, with an [N2O4] donor set. Complexes 1 – 3 were evaluated against urease and α‐glucosidase enzymes for their inhibition potential and were found to be inactive.  相似文献   

16.
In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdII centres with different coordination geometries. The first CdII centre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H‐imidazo[4,5‐f][1,10]phenanthroline (IP) ligand, giving a distorted octahedral coordination environment. The second CdII centre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocapped anti‐trigonal prismatic geometry. The symmetry‐independent CdII ions are bridged in an alternating fashion by sulfate ligands, forming one‐dimensional ladder‐like chains which are connected through the IP ligands to form two‐dimensional layers. These two‐dimensional layers are linked by interlayer hydrogen bonds, leading to the formation of a three‐dimensional supramolecular network.  相似文献   

17.
The title complex features a two‐dimensional polymeric structure owing to the presence of µ4‐bridging naphthalene‐1,4,5,8‐tetracarboxylate ligands. The trigonal bipyramidal coordination geometry for zinc is completed by a chelating 2,2′‐bipyridine and a water molecule. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The molecular and electronic structures of 5‐amino‐1,10‐phenanthroline and its monoprotonated and diprotonated species were obtained from ab initio quantum mechanical calculations with unrestricted Hartree–Fock (HF) and Møller–Plesset perturbation theories. The analysis of the net atomic charges and the total spin densities show three possible sites for the monomeric coupling in the polymerization process. The minimal energy conformation for the different kinds of coupling in the formation of the dimers was obtained. The studies were extended to the HF/6‐311 + G(2d,p)//B3LYP (Becke's three‐parameter exchange functional and the gradient‐corrected functional of Lee, Yang, and Paar)/6‐31G(d) level of theory to obtain theoretical nuclear magnetic resonance spectra to study the number and kinds of species involved in the protonation mechanism. Theoretical and experimental nuclear magnetic resonance spectra are in excellent agreement. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

19.
The zinc(II) center in the molecule of [(C23H36N4O3)ZnCl]Cl·H2O is coordinated by four nitrogen atoms of HL (1,3‐bis[2‐[2‐[(4‐methoxybenzyl) amino]ethylamino]]‐2‐propanol) and one chloro anion. The coordination moieties are connected by hydrogen bonds to form a one‐dimensional structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Tungsten and molybdenum complexes [M(CO)2(dpphen)(dbf)2] (M = W 1 or Mo 2 ; dpphen = 4,7‐diphenyl‐1,10‐phenanthroline; dbf = dibutylfumarate) have been synthesized and structurally characterized by X‐ray diffraction analysis. In both complexes which have similar structure, the metal atom co‐ordination is distorted octahedral with dpphen and two CO groups in the equatorial plane and the metal atom binds in an η2‐fashion to the C–C bonds of two dbf ligands. The two C–C bonds are almost mutually orthogonal. The two complexes are different in conformation which result from face selection of the two dbf ligands for coordination to the metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号