首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of tri‐ and diorganotin(IV) compounds containing potentially chelating S,N‐ligand(s) (LSN, where LSN is 6‐phenylpyridazine‐3‐thiolate) were prepared and structurally characterized by multinuclear NMR spectroscopy. X‐ray diffraction techniques were used for determination of the structure of compounds containing one [(LSN)Ph2SnCl], two [(n‐Bu)2Sn(LSN)2] and the combination of two LSN and one LCN [(LCN)(n‐Bu)Sn(LSN)2] (where LCN is {2‐[(CH3)2NCH2]C6H4}‐) ligands. The coordination number of the tin atom varies from five to seven and is dependent on the number of chelating ligands present. The formation of the five‐membered azastanna heterocycle is favored over the formation of four‐membered azastannathia heterocycle in compounds containing both types of ligands. The di‐n‐butyl‐substituted compounds are the most efficient ones in inhibition of growth of yeasts, molds and G+ bacteria strains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Triorganotin(IV) hydrides and cyclopentadienides as well as hexaorganodistannanes containing the moiety LCN (2-(N,N-dimethylaminomethyl)phenyl-) as chelating ligand and phenyl, n-butyl or t-butyl substituents were prepared and characterized by NMR and XRD. The compounds reveal trigonal bipyramidal geometry around the central tin atom except for the distannanes in which the tin atom has tetrahedral configuration. The di-n-butyl distannane cannot be oxidized by oxygen or heavier chalcogens and give no tin radical when irradiated by UV light or treated with the TEMPO - free radical at room temperature. LCN(t-Bu)2SnH undergoes reaction in solution toward the corresponding distannane. The hydrostannation reaction of LCN(n-Bu)2SnH with ferrocenylacetylene was investigated. The CO2 activation by LCN(n-Bu)2SnH was also examined.  相似文献   

3.
Five new organotin(IV) complexes of composition [Bz2SnL1]n ( 1 ), [Bz3SnL1H⋅H2O] ( 2 ), [Me2SnL2⋅H2O] ( 3 ), [Me2SnL3] ( 4 ) and [Bz3SnL3H]n ( 5 ) (where L1 = (2S )‐2‐{[(E )‐(4‐hydroxypentan‐2‐ylidene)]amino}‐4‐methylpentanoate, L2 = (rac )‐2‐{[(E )‐1‐(2‐hydroxyphenyl)methylidene]amino}‐4‐methylpentanoate and L3 = (2S )‐ or (rac )‐2‐{[(E )‐1‐(2‐hydroxyphenyl)ethylidene]amino}‐4‐methylpentanoate) were synthesized and characterized using 1H NMR, 13C NMR, 119Sn NMR and infrared spectroscopic techniques. The crystal structure of 2 reveals a distorted trigonal‐bipyramidal geometry around the tin atom where the oxygen atoms of the carboxylate ligand and a water ligand occupy the axial positions, while the three benzyl ligands are located at the equatorial positions. On the other hand, the analogous derivative of enantiopure L3H ( 5 ) consists of polymeric chains, in which the ligand‐bridged tin atoms adopt the same trans ‐Bz3SnO2 trigonal‐bipyramidal configuration and are now coordinated to a phenolic oxygen atom instead of H2O. In 2 , the OH hydrogen of the ketoimine substituent has moved to the nearby nitrogen atom while in the salicylidene derivative 5 , the OH is located almost midway between the phenolic oxygen atom and the nitrogen atom of the CN group. For the dibenzyltin derivative 1 , a polymeric chain structure is observed as a result of a long intermolecular Sn⋅⋅⋅O bond involving the exocyclic carbonyl oxygen atom from the tridentate ligand of a neighbouring tin‐complex unit. The tin atom in this complex has distorted octahedral coordination geometry. In contrast, the racemic dimethyltin(IV) complexes 3 and 4 display discrete monomeric structures with a distorted octahedral‐ and trigonal‐bipyramidal geometry, respectively. The structures show that the coordination mode of the Schiff base ligand depends primarily on the number of bulky benzyl ligands (R) at the tin atom, as indeed found in the structures of related complexes where R = phenyl. With three bulky R groups, the tridentate chelating O,N,O coordination mode is preferred, whereas with fewer or less bulky R ligands, only the carboxylate and hydroxy groups are involved, which leads to polymers. Larvicidal efficacies of two of the new tribenzyltin(IV) complexes ( 2 and 5 ) were assessed on the second larval instar of Anopheles stephensi mosquito larvae and compared with two triphenyltin(IV) analogues, [Ph3SnL1H]n and [Ph3SnL3H]n . The results demonstrate that the compounds containing Sn–Ph ligands are more effective than those with Sn–Bz ligands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Series of new tin complexes are synthesized by classical thermal and microwave‐irradiated techniques. The biologically potent ligands 3‐formyl‐4‐chlorocoumarin semicarbazone (L1H) and 3‐formyl‐4‐chlorocoumarin thiosemicarbazone (L2H), were prepared by the condensation of semicarbazide hydrochloride and thiosemicarbazide in ethanol with the particular ketone by using microwave as well as conventional methods. The tin(IV) complexes have been prepared by mixing Ph3SnCl/Me3SnCl/Me2SnCl2 in 1:1 and 1:2 molar ratios with monofunctional bidentate ligands. The structures of the ligands and their tin complexes were confirmed by the elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR, 13C NMR, 119Sn NMR, UV, mass spectral and X‐ray powder diffraction studies. On the basis of these studies it is clear that the ligands coordinated to the metal atom in a monobasic bidentate mode, by X$^{\cap}$ N donor system. Thus, suitable trigonal bipyramidal geometry for penta‐coordinated state and octahedral geometry for hexa‐coordinated state have been suggested for the 1:1 and 1:2 metal compounds. Both the ligands and their complexes have been screened for their antimicrobial, pesticidal and nematicidal activities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Me2Sn(S2CN(CH2)5)Cl contains five‐coordinated tin with a bidentate dithiocarbamate ligand spanning equatorial and axial positions in a distorted trigonal bipyramidal geometry. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A series of organotin(IV) complexes with 2‐mercapto‐5‐methyl‐1,3,4‐thiadiazole (HL) of the type R3 Sn(L) (R = Me 1 ; Bu 2 ; Ph 3 ; PhCH2 4 ) and R2Sn(L)2 (R = CH3 5 ; Ph 6 ; PhCH2 7 ; Bu 8 ) have been synthesized. All complexes 1–8 were characterized by elemental analysis, IR,1H, 13 C, and 119Sn NMR spectra. Among these, complexes 1 , 3 , 4 , and 7 were also determined by X‐ray crystallography. The tin atoms of complexes 1 , 3 , and 4 are all penta‐coordinated and the geometries at tin atoms of complexes 3 and 4 are distorted trigonal–bipyramidal. Interestingly, complex 1 has formed a 1D polymeric chain through Sn and N intermolecular interactions. The tin atom of complex 7 is hexa‐coordinated and its geometry is distorted octahedral. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:353–364, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20215  相似文献   

8.
Triorganotin(IV) chlorides containing one LCN chelating ligand were hydrolyzed with an excess of sodium hydroxide. The composition of the products is strongly dependent on the nature of the organic groups bound to the tin atom. Di(n-butyl)tin, dimethyltin as well as the diphenyl derivative exhibits an equilibrium between hydroxide and stannoxane forms (oxide), whereas alkyltin species react spontaneously and reversibly with carbon dioxide present in the air to form carbonate species. On the other hand, diphenyl derivatives display virtually no reaction with CO2 towards carbonates, while the di-t-butyl-substituted tin derivative is stable under the same experimental condition and remains as a tin hydroxide. In the case of the dimethyltin derivative, a methyl group migration was observed with displacement of one LCN chelating ligand during the reaction on the air. The coordination geometry of the tin central atom(s) of all studied compounds can be described as trigonal bipyramidal with a dative bonded dimethylamino group occupying one coordination site. The catalytic activity of these compounds in transesterification reactions is generally lower compared to the systems reported in the literature, with the exception of the transesterification of ethyl acetate by cyclohexanol which displays a remarkable activity.  相似文献   

9.
Guest‐induced M18L6–M24L8 capsule–capsule conversion is reported. Both capsules are composed of PdII ethylenediamine units (M) and 1,3,5‐tris(3,5‐pyrimidyl)pyrimidine (L), and form trigonal bipyramidal (M18L6) and octahedral (M24L8) closed‐shell structures with huge hydrophobic inner spaces. The M18L6 trigonal bipyramid is converted to the M24L8 octahedron through encapsulation of large aromatic guests, with the latter capsule possessing a cavity volume three times larger than the former. Despite the dynamic properties of the capsule host, the encapsulated guests are difficult to extract and are thus isolated from the external environment.  相似文献   

10.
The diorganotin(IV) complexes of methyl 2‐{4‐hydroxy‐3‐[(2‐hydroxy‐phenylimino)‐methyl]‐phenylazo}‐benzoate (H2L) were obtained by the reaction of ortho‐aminophenol, R2SnO (R = Me, nBu, or Ph) and methyl 2‐[(E)‐(3‐formyl‐4‐hydroxy)diazenyl]benzoate (H2PL2) in ethanol, which led to diorganotin(IV) compounds of composition [Me2SnL]2 ( 1 ), nBu2SnL ( 2 ), and Ph2SnL ( 3 ) in good yield. The 1H, 13C, and 119Sn NMR, IR, the mass spectrometry along with elemental analyses allowed establishing the structure of ligand (H2L) and compounds 1–3 . In all the three cases, 119Sn chemical shifts are indicators of five‐coordinated Sn atoms in a solution state. The crystal structures of ligand H2L and complexes 1 and 2 were determined by a single crystal X‐ray diffraction study. In the solid state, the ligand H2L exists as a keto‐enamine tautomeric form. The molecular structure of complex 1 in the solid state shows a distorted octahedral geometry around a tin atom due to additional coordination with an oxygen atom from a neighboring molecule leading to a four‐membered ring with Sn‐O···Sn‐O intermolecular coordination, leading to a dimeric species. On the other hand, complex 2 is a monomer with trigonal bipyramidal geometry surrounding the tin atom. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:457–465, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21037  相似文献   

11.
Six new triorganotin complexes ( 1a – 1c and 2a – 2c ) of 5‐(salicylideneamino)salicylic acid, [5‐(3‐X‐2‐HOC6H3CH═N)‐2‐HOC6H3COO]SnR3 (X = H, 1 ; CH3O, 2 ; R = Ph, a ; Cy, b ; CH2C(CH3)2Ph, c ), have been synthesized by one‐pot reaction of 5‐aminosalicylic acid, salicylaldehyde and triorganotin hydroxide and characterized using elemental analysis and infrared and NMR (1H, 13C and 119Sn) spectra. The crystal structures of 1a , 1b , 2a ·CH3OH, 2b ·CH3OH and 2c ·CHCl3 have been determined using single‐crystal X‐ray diffraction. In non‐coordinated solvent CDCl3, the tin atoms in the complexes are all four‐coordinated. In the crystalline state, these compounds adopt a four‐ or five‐coordination mode. Complex 1a exhibits a 44‐membered macrocyclic tetrameric structure with trigonal bipyramidal geometry around the tin atoms in which the axial positions are occupied by the oxygen atom of carboxylate group of the ligand and the phenolic oxygen atom from the adjacent ligand. The coordination geometry of tin atom in 1b and 2c ·CHCl3 is a distorted tetrahedron shaped by three carbon atoms of alkyl groups and a carboxylate oxygen atom of the ligand. In 2a ·CH3OH and 2b ·CH3OH, the tin atom has a distorted trans‐C3SnO2 trigonal bipyramidal geometry formed by three alkyl groups, a monodentate carboxylate group and a coordinated methanol molecule. The molecules of 2a ·CH3OH and 2b ·CH3OH are linked via O─H···O hydrogen bonds into a one‐dimensional supramolecular chain and a centrosymmetric R44(22) macrocycle, respectively. Bioassay results against two human tumor cell types (A549 and HeLa) show the complexes are efficient cytostatic agents and may be explored as potential antitumor drugs.  相似文献   

12.
Three monoorganotin(IV) compounds of general formula LCNSnX3, where LCN is a 2‐(dimethylaminomethyl)phenyl‐ group and X = Cl ( 1 ), Br ( 2 ) and I ( 3 ), were prepared and characterized using XRD and NMR techniques. Compound 1 reacts with moisture producing [(LCN)2HSnCl2]+ [LCNSnCl4]?. Compound 3 decomposes to (LCN)2SnI2, SnI2 and I2 when heated. Compound 2 was reacted with NH4F yielding an equilibrium of fluorine‐containing species. The major products were [LCNSnF5]2? and [(LCNSnF3)22‐F)2]2? (4a). When compound 2 was reacted with another fluorinating agent, LCN(n‐Bu)2SnF, an oligomeric product, [LCNSnF22‐F)2]n, was observed. Further addition of NH4F led to subsequent formation of 4a. The structure of fluorinated products was investigated by 1H, 19F and 119Sn NMR spectroscopy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The reaction of 4,4′‐bipy with dimethyltin(IV) chloride iso‐thiocyanate affords the one‐dimensional (1D) coordination polymer, [Me2Sn(NCS)Cl·(4,4′‐bipy)]n ( 1 ), whereas reaction of dimethyltin(IV) dichloride with sodium pyrazine‐2‐carboxylate in the presence of potassium iso‐thiocyanate affords the two‐dimensional (2D) coordination polymer, {[Me2Sn(C4H3N2COO)2]2 [Me2Sn(NCS)2]}n ( 2 ). Both coordination polymers were characterized by elemental analysis and infrared spectroscopy in addition to 1H and 13C NMR spectroscopy of the soluble coordination polymer ( 1 ). A single‐crystal structure determination showed that the asymmetric unit in 1 contains Me2Sn(NCS)Cl and 4,4′‐bipy moieties and a 1D infinite rigid chain structure forms through bridging of the 4,4′‐bipy ligand between tin atoms and the geometry around the tin atom is a distorted octahedral. Coordination polymer 2 contains two distinct tin atom geometrics in which one tin atom is seven coordinate, and the other is six coordinate. The two tin atom environments are best described as a pentagonal bipyramidal in the former and distorted octahedral in the latter where the carboxylate groups bridge the two tin atoms and construct a 2D‐coordination polymer. The 119Sn NMR spectroscopy indicates the octahedral geometry of 1 retains in solution. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:699–706, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/.20736  相似文献   

14.
The three‐dimensional coordination polymer poly[[bis(μ3‐2‐aminoacetato)di‐μ‐aqua‐μ3‐(naphthalene‐1,5‐disulfonato)‐hexasilver(I)] dihydrate], {[Ag6(C10H6O6S2)(C2H4NO2)4(H2O)2]·2H2O}n, based on mixed naphthalene‐1,5‐disulfonate (L1) and 2‐aminoacetate (L2) ligands, contains two AgI centres (Ag1 and Ag4) in general positions, and another two (Ag2 and Ag3) on inversion centres. Ag1 is five‐coordinated by three O atoms from one L1 anion, one L2 anion and one water molecule, one N atom from one L2 anion and one AgI cation in a distorted trigonal–bipyramidal coordination geometry. Ag2 is surrounded by four O atoms from two L2 anions and two water molecules, and two AgI cations in a slightly octahedral coordination geometry. Ag3 is four‐coordinated by two O atoms from two L2 anions and two AgI cations in a slightly distorted square geometry, while Ag4 is also four‐coordinated by two O atoms from one L1 and one L2 ligand, one N atom from another L2 anion, and one AgI cation, exhibiting a distorted tetrahedral coordination geometry. In the crystal structure, there are two one‐dimensional chains nearly perpendicular to one another (interchain angle = 87.0°). The chains are connected by water molecules to give a two‐dimensional layer, and the layers are further bridged by L1 anions to generate a novel three‐dimensional framework. Moreover, hydrogen‐bonding interactions consolidate the network.  相似文献   

15.
Fourteen new diorganotin(IV) complexes of N‐(5‐halosalicylidene)‐α‐amino acid, R′2Sn(5‐X‐2‐OC6H3CH?NCHRCOO) (where X = Cl, Br; R = H, Me, i‐Pr; R′ = n‐Bu, Ph, Cy), were synthesized by the reactions of diorganotin halides with potassium salt of N‐(5‐halosalicylidene)‐α‐amino acid and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of Bu2Sn(5‐Cl‐2‐OC6H3CH?NCH(i‐Pr)COO) and Ph2Sn(5‐Br‐2‐OC6H3CH?NCH(i‐Pr)COO) were determined by X‐ray single‐crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Bioassay results of a few compounds indicated that the compounds have strong cytotoxic activity against three human tumour cell lines, i.e. HeLa, CoLo205 and MCF‐7, and the activity decreased in the order Cy>n‐Bu>Ph for the R′ group bound to tin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Five new diorganotin N‐[(3‐methoxy‐2‐oxyphenyl)methylene] tyrosinates, R2Sn[2‐O‐3‐MeOC6H3CH=NCH (CH2C6H4OH‐4)COO] (R = Me, 1 ; Et, 2 ; Bu, 3 ; Cy, 4 ; Ph, 5 ), have been synthesized and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra, and the X‐ray single crystal diffraction. In non‐coordinated solvent, complexes 1 – 5 have penta‐coordinated tin atom. In the solid state, 1 – 3 are centrosymmetric dimmers in which each tin atom is seven‐coordinated in a distorted pentagonal bipyramid, and 4 displays discrete molecular structure with distorted trigonal bipyramidal geometry, and the tin atom of 5 is hexa‐coordinated and possess the distorted octahedral geometry with a coordinational methanol molecule. The intermolecular O‐H???O hydrogen bonds in 1 – 4 link molecules into the different one‐dimensional supramolecular chain with R22 (30) or R22 (20) macrocycles, and the molecules of 5 are joined into a two‐dimensional supramolecular network containing R44 (24) and R44 (28) two macrocycles. Bioassay results against human tumour cell HeLa indicated that 3 ‐ 5 belonged to the efficient cytostatic agents and the activity decreased in the order 4 > 3 > 5 > 2 > 1. The fluorescence determinations show the complexes may be explored for potential luminescent materials.  相似文献   

17.
The C,N-chelated tri and diorganotin(IV) chlorides react with both protic mineral acids and carboxylic acids. The nitrogen atom of the LCN ligand (where LCN is 2-(dimethylaminomethyl)phenyl) is thus quarternized - protonated and new Sn-X bond (X = Cl, Br, I or the remainder of the starting acid used) is simultaneously formed. The set of zwitterionic tri and diorganostannates containing protonated 2-(dimethylaminomethyl)phenyl-moiety was prepared and structurally characterized by multinuclear NMR spectroscopy and XRD techniques. In all these cases, the intramolecular N-H?X bond is present in the molecule. Despite the central tin atom remains five-coordinated (except for the [HLCNH]+[(n-Bu)2SnCl(NO3)2]) and reveals a distorted trigonal bipyramidal geometry, the 119Sn NMR chemical shift values of these zwitterionic stannates are somewhat shifted to the higher field than corresponding starting C,N-chelated tri and diorganotin(IV) halides. Reactions of C,N-chelated organotin(IV) halides with various Lewis acids are also discussed.  相似文献   

18.
The potential catalytic activity of selected C,N‐chelated organotin(IV) compounds (e.g. halides and trifluoroacetates) for derivatization of both dimethyl carbonate (DMC) and diethyl carbonate (DEC) was investigated. Some tri‐, di‐ and monoorganotin(IV) species (LCN(n‐Bu)2SnCl (1), LCN(n‐Bu)2SnCl.HCl (1a), LCN(n‐Bu)2SnI (2), LCNPh2SnCl (3), LCNPh2SnI (4), LCN(n‐Bu)SnCl2 (5), LCNSnBr3 (6) and [LCNSn(OC(O)CF3)]2(μ‐O)(μ‐OC(O)CF3)2 (7)) bearing the LCN moiety (LCN = 2‐(N,N‐dimethylaminomethyl)phenyl‐) were assessed as catalysts for reactions of both DMC and DEC with various substituted anilines. The catalytic activities of 4 and 7 for derivatization of DMC with p‐substituted phenols were studied for comparison with the standard base K2CO3/Silcarbon K835 catalyst (catalyst 8). The composition of resulting reaction mixtures was monitored by multinuclear NMR spectroscopy, GC and GC‐MS techniques. In general, catalysts 1, 3 and 7 exhibited the highest catalytic activity for all reactions studied, while some of them yielded selectively carbonates, carbamates, lactam or substituted urea. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A trigonal bipyramidal C2ClS2 coordination geometry for tin is found in Ph2Sn(S2CN(CH2)5)Cl. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The polymeric chains of [Sn(CH3)3(C28H25O3Ge)]n contain trimethyltin moieties bridging two neighboring 3‐(triphenylgermyl)‐3‐o‐methoxypropionate ligands via carboxyl groups. The germanium atom has a distorted tetrahedral geometry and the tin atom has a distorted trigonal‐bipyramidal geometry, the latter with three methyl groups in the equatorial plane and oxygen atoms defining the axial positions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号