首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angle‐resolved XPS data (elemental quantification and high‐energy‐resolution C 1s) are presented for ten polymers with side‐chains of the form ? OCO(CF2)yF, ? COO(CH2)2OCO(CF2)yF (y = 1, 2, 3) and ? COO(CH2)x(CF2)yF (x = 1, y = 1, 2, 3; x = 2, y = 8). Particular attention was paid to charge compensation and speed of data acquisition, with co‐addition from multiple fresh samples to give spectra with good energy resolution and good signal‐to‐noise ratio free from the effects of x‐ray‐induced degradation. Water contact angles for the polymers are also reported. The XPS data demonstrate preferential surface segregation of fluorine‐containing groups for all but the shortest side‐chain polymer, where the ? OCOCF3 side‐chain either does not surface segregate or is too short for surface segregation to be detectable by angle‐resolved XPS. In the other polymers studied the relative positions of functional groups in the side‐chains correlate with the angle‐resolved behaviour of the corresponding C 1s components. This shows that the surface side‐chains are oriented towards the polymer surface. For the ? COO(CH2)2OCO(CF2)yF (y = 1) side‐chain, the angle‐resolved C 1s data suggest reduced ordering and linearity compared with y = 2 and 3. For any particular series of polymers, e.g. ? COO(CH2)x(CF2)yF, the water contact angles increase with y, consistent with burying of the hydrophilic ester groups as y increases. For any particular value of y the sequence of water contact angles is ? COO(CH2)x(CF2)yF > ? OCO(CF2)yF ~ ? COO(CH2)2OCO(CF2)yF, suggesting greater ordering and density of fluorocarbon species at the surface of the ? COO(CH2)x(CF2)yF side‐chain polymers compared with the other polymers studied. For the ? COO(CH2)2(CF2)8F polymer a water contact angle of 124° is measured, which is greater than that of poly(tetrafluoroethene). The ? COO(CH2)2OCO(CF2)F polymer is unusual in that it shows a particularly low water contact angle (83° ), suggesting that the probe fluid is able to sense both ester groups, consistent with the reduced ordering of the side‐chain detected by angle‐resolved XPS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3?xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3?xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3?xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3?xClx and CH3NH3PbI3?xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively.  相似文献   

3.
Amorphous non‐hydrogenated germanium carbide (a‐Ge1?xCx) films have been deposited using magnetron co‐sputtering technique by varying the sputtering power of germanium target (PGe). The effects of PGe on composition and structure of the a‐Ge1?xCx films have been analyzed. The FTIR spectrum shows that the C–Ge bonds were formed in the a‐Ge1?xCx films according to the absorption peak at ~610 cm?1. The Raman results indicate that the amorphous films also contain both Ge and C clusters. The XPS results reveal that the carbon concentration decreased as PGe increased from 40 to 160 W. The fraction of sp3 C–C bonds remains almost constant when increasing PGe from 40 to 160 W. The sp2 C–C content of a‐Ge1?xCx film decreases gradually to 35.9% with PGe up to 160 W. Nevertheless, sp3 C–Ge sites rose with increasing PGe. Furthermore, the hardness and the refractive index gradually increased with increasing PGe. The excellent optical transmission of annealed a‐Ge1–xCx double‐layer coating at 400 °C suggests that a‐Ge1?xCx films can be used as an effective anti‐reflection coating for the ZnS IR window in the wavelength region of 8–12 µm, and can endure higher temperature than hydrogenated amorphous germanium carbide do. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The reactions of 4,5,6,7‐tetrathiocino‐[1,2‐b:3,4‐b′]‐1,3,8,10‐tetrasubstituted‐diimidazolyl‐2,9‐dithiones (R2,R′2‐todit; 1 : R=R′=Et; 2 : R=R′=Ph; 3 : R=Et, R′=Ph) with Br2 exclusively afforded 1:1 and 1:2 “T‐shaped” adducts, as established by FT‐Raman spectroscopy and single‐crystal X‐ray diffraction in the case of complex 1? 2 Br2. On the other hand, the reactions of compounds 1 – 3 with molecular I2 provided charge‐transfer (CT) “spoke” adducts, among which the solvated species 3? 2 I2 ? (1?x)I2 ? x CH2Cl2 (x=0.94) and ( 3 )2 ? 7 I2 ? x CH2Cl2, (x=0.66) were structurally characterized. The nature of all of the reaction products was elucidated based on elemental analysis and FT‐Raman spectroscopy and supported by theoretical calculations at the DFT level.  相似文献   

5.
The reaction of germanium(II)‐bis(2‐methoxyphenyl)methoxide with methanesulfonic acid provides the germanium(II) sulfonate Ge(CH3SO3)2 ( 1 ), which was characterized by X‐ray diffraction, elemental analysis, NMR spectroscopy, and IR spectroscopy. The decomposition process of 1 was investigated by thermal gravimetric analysis (TGA) and temperature‐dependent X‐ray powder diffraction (PXRD) and both are consistent with the formation of GeO2 as major final product. Single crystal X‐ray diffraction at 110 K revealed the chiral tetragonal space group P41212 and formation of a three‐dimensional (3D) coordination network solid. The 3D network is composed of interconnected twenty four‐membered rings comprising bridging methanesulfonate groups, which link the germanium atoms.  相似文献   

6.
The formation of reverse‐vesicular structures of the polyoxometalate‐containing hybrid surfactants [nBu4N]3[MnMo6O18{(OCH2)3? CNHCO(CH2)n?2CH3}2] (Mn‐Anderson‐Cn, n=6, 16) in nonpolar medium was achieved by titrating toluene into Mn‐Anderson‐Cn/acetonitrile (MeCN) solution. Stepwise change of the solvent polarity induces self‐association of the hydrophilic Mn‐Anderson cluster on the hybrid amphiphiles. The reverse‐vesicle formation was characterized by laser light scattering and further confirmed by transmission electron microscopy techniques, and the vesicle sizes increase with increasing toluene contents. The assembly process was accelerated at an elevated temperature. The length of the alkyl tails on the hybrid surfactants has a minor effect on the vesicle sizes, because the strong attraction between the polyoxometalate clusters is more dominant in the reverse‐vesicle formation.  相似文献   

7.
The sulfurization of DmpGeH3 (Dmp=2,6‐dimesitylphenyl) afforded the trinuclear germanium sulfide [DmpGe(μ‐S)]2(μ‐S)2Ge(SH)‐Dmp and a series of polythiadigermabicyclo[x.1.1]alkanes (x=3, 4, 5). The reduction of the S? S bonds of these germabicycloalkanes by NaBH4 at 0 °C afforded the dinuclear mercaptogermane syn‐[DmpGe(SH)(μ‐S)2Ge(SH)‐Dmp] ( 5 ) in good yield. The reaction of [Pd(dppe)Cl2] (dppe=1,2‐bis(diphenylphosphanyl)ethane) and the dilithium salt of 5 prepared in situ by the addition of nBuLi (2 equiv) gave the Ge2PdS4 cluster [DmpGe(μ‐S)]2[(μ‐S)2Pd(dppe)], in which the dithiadigermetanedithiolate is bound to the Pd atom at the two thiolato sulfur atoms. The same reaction with [Pd(PPh3)2Cl2] gave another Ge2PdS4 cluster, [DmpGe(μ‐S)]2[(μ‐S)2Pd(PPh3)], but with the dithiadigermetanedithiolate and the Pd center conjoined through a μ‐S atom between the two germanium atoms in addition to the two thiolato sulfur atoms to form a highly distorted cluster core. The formation of two different types of Ge2PdS4 clusters represents the usefulness of 5 in the synthesis of various polynuclear complexes composed of germanium and transition metals.  相似文献   

8.
The production of dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO2) in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been shown to be very sensitive to nitrogen oxides (NOx) levels. In the present work we have explored the potential energy surfaces corresponding to several reaction pathways which yield DMSO2 from the CH3S(O)(OH)CH3 adduct [including the formation of CH3S(O)(OH)CH3 from the reaction of DMSO with OH] and the reaction channels that yield DMSO or/and DMSO2 from the CH3S(O2)(OH)CH3 adduct are also studied. The formation of the CH3S(O2)(OH)CH3 adduct from CH3S(OH)CH3 (DMS‐OH) and O2 was analyzed in our previous work. All these pathways due to the presence of NOx (NO and NO2) and also due to the reactions with O2, OH and HO2 are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO2 (and DMSO) formation yields. In particular, our theoretical results clearly show the existence of NOx‐dependent pathways leading to the formation of DMSO2, which could explain some of these experimental results in comparison with experimental measurements carried out in NOx‐free conditions. Our results indicate that the relative importance of the addition channel in the DMS oxidation process can be dependent on the NOx content of chamber experiments and of atmospheric conditions. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

9.
In this article, water exchange reactions on [Be(L)(H2O)3]2+ (L?=?NH3? x (CH3) x , PH3? x (CH3) x , AsH3? x (CH3) x , OH2? x (CH3) x , SH2? x (CH3) x , SeH2? x (CH3) x , pyridine, 4-fluoropyridine, 4-bromopyridine, 4-chloropyridine, 4-hydroxypyridine, 4-thiolopyridine, 4-selenidopyridine, 4-nitrilopyridine, 1,4-diazine, 1,3,5-triazine, HCN, acetonitrile, and benzonitrile) are examined, utilizing the B3LYP//6-311?+?G** density functional for geometry optimizations, and B3LYP//6-311?+?G** both with and without the CPCM solvent model as well as MP2(full)//6-311?+?G** for subsequent single-point energy calculations. In all examined cases, the results prove that these complexes show associative interchange mechanisms for water exchange. With the exception of the NH x (CH3)3? x series of ligands, activation energy barriers vary little, making these ligands mostly spectator ligands. Geometrical parameters vary mainly with the ligand size.  相似文献   

10.
Organosilyl/‐germyl polyoxotungstate hybrids [PW9O34(tBuSiO)3Ge(CH2)2CO2H]3? ( 1 a ), [PW9O34(tBuSiO)3Ge(CH2)2CONHCH2C?CH]3? ( 2 a ), [PW11O39Ge(CH2)2CO2H]4? ( 3 a ), and [PW11O39Ge(CH2)2CONHCH2C≡CH]4? ( 4 a ) have been prepared as tetrabutylammonium salts and characterized in solution by multinuclear NMR spectroscopy. The crystal structure of (NBu4)3 1 a? H2O has been determined and the electrochemical behavior of 1 a and 2 a has been investigated by cyclic voltammetry. Covalent grafting of 2 a onto an n‐type silicon wafer has been achieved and the electrochemical behavior of the grafted clusters has been investigated. This represents the first example of covalent grafting of Keggin‐type clusters onto a Si surface and a step towards the realization of POM‐based multilevel memory devices.  相似文献   

11.
Polystyrene copolymers of the type ( P −H)1−x( P −(CH2)n−COOSnR3)x containing [(1‐oxoalkyl)oxy]triphenylstannane or tributyl[(1‐oxoalkyl)oxy]stannanes as side chains ( P −H=styrene; P −(CH2)n−COOSnR3 =para‐substituted styrene‐like monomeric unit with R=Ph (x=0.1), Bu (x=0.5); n=2–4) were investigated. The tributyl[(1‐oxoalkyl)oxy]stannane copolymer was prepared by direct conversion of the corresponding copolymeric methyl esters with hexabutyldistannoxane. By contrast, the [(1‐oxoalkyl)oxy]triphenylstannane copolymer could be prepared only by a procedure involving two reaction steps consisting of a preliminary hydrolysis of the related methyl ester ( P −H)1‐x( P −(CH2)n−COOMe)x followed by functionalization of the corresponding poly(carboxylic acid) ( P −H)1‐x( P −(CH2n−COOH)x with hydroxytriphenylstannane. Attempts to directly convert the methyl ester with hydroxytriphenylstannane or hexaphenyldistannoxane led to the formation of uncompletely functionalized product. The structure of the stannane‐functionalized polymers was investigated in solution and solid state by NMR, IR, and thermal analysis. The tributylstannane and triphenylstannane copolymers were assessed as chloride‐selective anion carriers in polymeric‐liquid‐membrane potentiometric ion‐selective electrodes.  相似文献   

12.
New gold(I) alkynyl metalloligands bpylC?CAuL, bpyl′C?CAuPPh3, and PPN[Au(C?Cbpyl′)2] (bpyl or bpyl′=2,2′‐bipyridin‐5‐yl or ?4‐yl, respectively; L=PMexPh3?x (x=1–3), P(C6H3Me2‐3,5)3, PCy3, XyNC) have been synthesized. Ligands bpylC?CH and metalloligands bpylC?CAuL (L=PPh3, PMePh2, PCy3, CNXy) react with MX2 (M=Fe, Zn, X=ClO4; M=Co, X=BF4) to give complexes [M(bpylC?CZ)3]X2 (Z=H or AuL). In most cases, these complexes are mixtures of fac and mer isomers in a statistical distribution, in both CH2Cl2 and MeCN. However, for L=PPh3, the fac isomer is dominant in MeCN. NMR and ESI‐MS studies, together with the crystal structure of [Co(bpylC?CAuPPh3)3](BF4)2, suggest that this solvent dependence is originated by the formation of helical dimers between two fac complexes in MeCN. These dimers are stabilized by solvophobic effects and multiple intermolecular interactions. Complex [Fe(Ph3PAuC?CbpdiylC?CAuPPh3)3](ClO4)2 (bpdiyl=2,2′‐bipyridin‐5,5′‐diyl) was obtained by reaction of three diauro diethynylbipyridines and Fe(ClO4)2.  相似文献   

13.
The design of a synthetic route to a class of enantiomerically pure phosphaalkene–oxazolines (PhAk‐Ox) is presented. The condensation of a lithium silylphosphide and a ketone (the phospha‐Peterson reaction) was used as the P?C bond‐forming step. Attempted condensation of PhC(?O)Ox (Ox=CNOCH(iPr)C H2) and MesP(SiMe3)Li gave the unusual heterocycle (MesP)2C(Ph)?CN‐(S)‐CH(iPr)CH2O ( 3 ). However, PhAk‐Ox (S,E)‐MesP?C(Ph)CMe2Ox ( 1 a ) was successfully prepared by treating MesP(SiMe3)Li with PhC(?O)CMe2Ox (52 %). To demonstrate the modularity and tunability of the phospha‐Peterson synthesis several other phosphaalkene–oxazolines were prepared in an analogous manner to 1 a : TripP?C(Ph)CMe2Ox ( 1 b ; Trip=2,4,6‐triisopropylphenyl), 2‐iPrC6H4P?C(Ph)CMe2Ox ( 1 c ), 2‐tBuC6H4P?C(Ph)CMe2Ox ( 1 d ), MesP?C(4‐MeOC6H4)CMe2Ox ( 1 e ), MesP?C(Ph)C(CH2)4Ox ( 1 f ), and MesP?C(3,5‐(CF3)2C6H3)C(CH2)4Ox ( 1 g ). To evaluate the PhAk‐Ox compounds as prospective precursors to chiral phosphine polymers, monomer 1 a and styrene were subjected to radical‐initiated copolymerization conditions to afford [{MesPC(Ph)(CMe2Ox)}x{CH2CHPh}y]n ( 9 a : x=0.13n, y=0.87n; GPC: Mw=7400 g mol?1, PDI=1.15).  相似文献   

14.
The reactions of 1,3,8,10‐tetrakis(4′‐fluorophenyl)‐4,5,6,7‐tetrathiocino[1,2‐b:3,4‐b′]diimidazolyl‐2,9‐dithione ( 4 ) and molecular diiodine afforded spoke adducts with stoichiometries 4·I2 and 4? 3I2, isolated in the compound 4? 3I2 ? xCH2Cl2 ? (1?x)I2 (x=0.70), and characterized by single‐crystal XRD and FT–Raman spectroscopy. The nature of the reaction products was investigated under the prism of theoretical calculations carried out at the DFT level. The structural data, FT–Raman spectroscopy, and quantum mechanical calculations agree in indicating that the introduction of fluorophenyl substituents results in a lowering of the Lewis basicity of this class of bis(thiocarbonyl) donors compared with alkyl‐substituted tetrathiocino donors and fluorine allows for extended interactions that are responsible for solid‐state crystal packing.  相似文献   

15.
Nanoscale uranyl peroxide clusters containing UO22+ groups bonded through peroxide bridges to form polynuclear molecular species (polyoxometalates) exist both in solution and in the solid state. There is an extensive family of clusters containing 28 uranium atoms (U28 clusters), with an encapsulated anion in the center, for example, [UO2(O2)3?x(OH)x4?], [Nb(O2)43?], or [Ta(O2)43?]. The negative charge of these clusters is balanced by alkali ions, both encapsulated, and located exterior to the cluster. The present study reports measurement of enthalpy of formation for two such U28 compounds, one of which is uranyl centered and the other is peroxotantalate centered. The [(Ta(O2)4]‐centered U28 capsule is energetically more stable than the [(UO2)(O2)3]‐centered capsule. These data, along with our prior studies on other uranyl–peroxide solids, are used to explore the energy landscape and define thermochemical trends in alkali–uranyl–peroxide systems. It was suggested that the energetic role of charge‐balancing alkali ions and their electrostatic interactions with the negatively charged uranyl–peroxide species is the dominant factor in defining energetic stability. These experimental data were supported by DFT calculations, which agree that the [(Ta(O2)4]‐centered U28 capsule is more stable than the uranyl‐centered capsule. Moreover, the relative stability is controlled by the interactions of the encapsulated alkalis with the encapsulated anion. Thus, the role of alkali‐anion interactions was shown to be important at all length scales of uranyl–peroxide species: in both comparing clusters to clusters; and clusters to monomers or extended solids.  相似文献   

16.
Synthesis of “Inorganic” Pode-type Molecules. II The reaction of the amino compounds MeyB? NMe2 (B ? As, y ? 2; B ? Si, y ? 3) with 1, n-dioles results in the formation of the compounds HO(CH2)nOBMey. These compounds can be used as the arms of pode-type molecules MexA[? O(CH2)nOBMey]z with A ? Si, As. The influence of A, B, n, and z in the rearrangement of these molecules is examined. A second type of pode molecules can be prepared by the reaction of Me2As? R? OH (R ? CH2CH2, CH2CH2(OCH2CH2)2) with the amino compounds Mex(NMe2)z (A ? As, Si). These reactions result in the formation of molecules as MexA(ORAsMe2)z.  相似文献   

17.
Aluminum–vanadium bimetallic oxide cluster anions (BMOCAs) have been prepared by laser ablation and reacted with ethane and n‐butane in a fast‐flow reactor. A time‐of‐flight mass spectrometer was used to detect the cluster distribution before and after the reactions. The observation of hydrogen‐containing products AlVO5H? and AlxV4?xO11?xH? (x=1–3) strongly suggests that AlVO5? and AlxV4?xO11?x? (x=1–3) can react with ethane and n‐butane by means of an oxidative dehydrogenation process at room temperature. Density functional theory studies have been carried out to investigate the structural, bonding, electronic, and reactive properties of these BMOCAs. Terminal‐oxygen‐centered radicals (Ot.) were found in all of the reactive clusters, and the Ot. atoms, which prefer to be bonded with Al rather than V atoms, are the active sites of these clusters. All the hydrogen‐abstraction reactions are favorable both thermodynamically and kinetically. To the best of our knowledge, this is the first example of hydrogen‐atom abstraction by BMOCAs and may shed light on understanding the mechanisms of C? H activation on the surface of alumina‐supported vanadia catalysts.  相似文献   

18.
Hydrosilylation of fluorinated olefins with polyhydromethylsiloxane (PHMS) in the presence of a platinum catalyst was investigated to synthesize fluorosilicone having highly fluorinated alkyl side chains (Rf; CnF2n+1? ). The hydrosilylation of 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐heptadecafluoro‐1‐decene (C8F17CH?CH2) ( 1 ) with poly(dimethylsiloxane‐co‐hydromethylsiloxane) {(CH3)3SiO[? (H)CH3SiO? ]8[? (CH3)2 SiO? ]18Si(CH3)3} ( 4 ) converted the hydrogen bonded to silicons into the 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐heptadecafluorodecyl group or fluorine bonded to silicons in the ratio of about 52:48, and the formation of the byproduct C7F15CF?CHCH3 ( 8 ) was observed. The hydrosilylation of 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14‐heptadecafluoro‐4‐oxa‐1‐tetradecene (C8F17CH2CH2OCH2CH?CH2) ( 2 ) with 4 converted the hydrogen bonded to silicons into the 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14‐heptadecafluoro‐4‐oxa‐tetradocyl group bonded to silicons, but an excess amount of 2 was required to complete the reaction because the isomerization of 2 occurred in part to form C8F17CH2CH2OCH?CHCH3 ( 9 ). The hydrosilylation of 4,4,5,5,6,6,7,7,8,8,9,9, 10,10,11,11,11‐heptadecafluoro‐1‐undecene (C8F17CH2CH?CH2) ( 3 ) with 4 converted the hydrogen bonded to silicons into the 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11‐heptadecafluoroundecyl group bonded to silicons. This type of fluorinated olefin was successfully applied to the hydrosilylation with other PHMS's that involved a homopolymer of PHMS and a cyclic PHMS. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3120–3128, 2002  相似文献   

19.
The square‐planar monomer NiL2 ( Ni1 ), L=2‐ethoxy‐6‐(N‐methyl‐iminomethyl)phenolate, reacts with M(H2O)6(ClO4)2, M=Ni or Co, to form heptanuclear disks [CoxNi7?x(OH)6(L)6](ClO4)2 ? 2 CH3CN ( Co x Ni7?x , x=0–7) and the co‐crystal [CoxNi7?x(OH)6L6][NiL2](ClO4)2 ? 2 CH3CN ( Co x Ni7?x ‐Ni1 ) under ambient conditions. It has proved possible to explore the bottom‐up assembly process of Co x Ni7?x and Co x Ni7?x ‐Ni1 in real time. The final products have been characterized by thermogravimetric analysis, IR, elemental analysis, ICP‐MS, and single‐crystal X‐ray diffraction. Time‐dependent mass spectrometry (MS) revealed the following reaction steps: Ni1→[M2L3]+→[M4(OH)2L4]2+→[M7(OH)6L6]2+. In contrast, the reaction of Ni1 with Zn2+ only reaches halfway, and crystallographic evidence indicates a butterfly structure for [Zn2Ni2(OH)2Cl2] ( Zn2Ni2 ), an intermediate that is difficult to isolate in the above Ni‐Co series. A summation method has been used to analyze the MS of bimetallic clusters with very similar atomic masses, as is the case for Co and Ni. The results provide ample information on the distribution of Co and Ni within each cluster and their statistical distribution within selected crystals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号