首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Fluoride Borates of Gadolinium: Gd2F3[BO3] and Gd3F3[BO3]2 By flux‐supported solid‐state reaction of Gd2O3 and GdF3 with B2O3 (flux: CsCl, molar ratio: 1 : 1 : 1 : 6, sealed tantalum capsule, 700 °C, 7 d) the new gadolinium fluoride borate Gd2F3[BO3] (monoclinic, P21/c; a = 1637.2(1), b = 624.78(4), c = 838.04(6) pm, β = 93.341(8)°; Vm = 64.418(6) cm3/mol, Z = 8) was obtained as colourless, prismatic, face‐rich single crystals. The four crystallographically different Gd3+ cations (CN = 9) are all capped square‐antiprismatically surrounded by fluoride and oxide anions, in which the latter represent always components of isolated trigonal planar [BO3]3— anions. The six crystallographically independent F anions all reside in more or less planar coordination of three Gd3+ cations. Thus the constitution of Gd2F3[BO3] can be described as a sequence of alternating layers each of the composition Gd[BO3] and GdF3 parallel (100), respectively. The crystal structures of Gd2F3[BO3] and the shortly published Gd3F3[BO3]2 (monoclinic, C2/c; a = 1253.4(1), b = 623.7(1), c = 836.0(1) pm, β = 97.404(6)°; Vm = 97.571(9) cm3/mol, Z = 4) are compared with each other. Due to the structural analogies between these two gadolinium fluoride borates, a disorder model of the boron atoms frequently found for Gd2F3[BO3] is able to be transferred to Gd3F3[BO3]2 as well.  相似文献   

2.
The novel copper(I)‐thioantimonates(III) (enH22+)0.5Cu2SbS3 ( I ) (en = ethylendiamine), (1, 3‐DAPH22+)0.5Cu2SbS3 ( II ) (1, 3‐DAP = 1, 3 diaminopropane) and (1, 4‐DABH22+)0.5Cu2SbS3 ( III ) (1, 4‐DAB = 1, 4‐diaminobutane) were synthesized under solvothermal conditions reacting Sb2S3, CuCl2·2H2O, S with the amines. The compounds crystallize in the monoclinic space group P21/n. The primary building units are a SbS3 trigonal pyramid and two distorted CuS3 units. In the structures the SbS3 pyramid is connected to six CuS3 moieties and every S atom has bonds to one Sb atom and to two Cu atoms. Further interconnection leads to the formation of ten‐membered (10 MR) Cu3Sb2S5 and six‐membered (6 MR) Cu2SbS3 rings. Every 10 MR is condensed to four 10 MR and four 6 MR to form a single layer within the (010) plane. Two such single layers are connected to a double layer thus forming the final [Cu2SbS3] layered anion. The [CuSbS3] protonated amines are located between the layers and the interlayer spacing depends on the size and orientation of these amines. Between the Sb atom and one Cu atom a remarkable short distance of about 2.7Å is observed. At elevated temperatures the compounds decompose into CuSbS2 and Cu3SbS4 suggesting a complex redox reaction. Diamagnetic susceptibilities indicate the copper(I) in the metal sulfide frameworks. All three compounds are semiconductors with intermediate band gaps of about 2 eV.  相似文献   

3.
Anhydrous Selenites of Lanthanum: Syntheses and Crystal Structures of La2(SeO3)3 and LaFSeO3 Colorless single crystals of La2(SeO3)3 were obtained via the decomposition of La2(SeO4)3 in the presence of NaCl in sealed gold ampoules. The compound crystallizes in the orthorhombic system (Pnma, Z = 4, a = 846.7(1), b = 1428.6(1), c = 710.3(2) pm, Rall = 0.0223) and contains La3+ in tenfold coordination of oxygen atoms which belong to seven SeO32– groups. Hence, three of the latter act as bidentate ligands. The reaction of LiF with La2(SeO4)3 in sealed gold ampoules yielded colorless single crystals of LaFSeO3 (monoclinic, P21/c, Z = 12, a = 1819.8(3), b = 715.75(8), c = 846.4(1) pm, β = 96.89(2)°, Rall = 0.0352). The crystal structure contains three crystallographically different La3+ ions. La1 is surrounded by six oxygen atoms from five SeO32– groups and four fluoride ions, La2 is coordinated by two bidentate SeO32– ions and seven fluoride ligands. La3 is surrounded by oxygen atoms only with the coordination number and polyhedron being almost the same as found for La3+ in La2(SeO3)3. Furthermore, the crystal structures of both compounds are strongly influenced by the lone pairs of the SeO32– groups.  相似文献   

4.
The compounds [Hg2(μ—SePh)2(SePh)2(PPh3)2] ( I ) and [Hg3Br3(μ—SePh)3] · 2 DMSO ( II ) are formed by reactions of [Hg(SePh)2] with PPh3 in THF( I ) or with HgBr2 in DMSO ( II ) at room temperature. X—ray crystallography reveals that the cluster I consists of a distorted square built by each two Hg and Se atoms. The Hg atoms have almost tetrahedral co‐ordination environments formed by selenium atoms of two (μ‐SePh) ligands and Se and P atoms of terminal SePh and PPh3 ligands. The compound II is a six‐membered ring with alternating Hg and Se atoms in the chair conformation. Two DMSO molecules occupy positions below and above the [Hg3Se3] ring with the oxygen atoms directed to the centre of the ring.  相似文献   

5.
The two‐dimensional zinc phosphate [H3N(CH2)3NH3]0.5[Zn2(PO4)(HPO4)], has been synthesized hydrothermally using 1,3‐diaminopropane as the template. Its structure contains an inorganic framework with three‐, four‐, or six‐membered rings, built from PO4, PO3(OH) and ZnO4 tetrahedral moieties sharing vertexes. The protonated 1,3‐diaminopropane molecules interact with the framework through hydrogen bonds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The barium perfluoroalkanedisulfonates Ba(O3S)2(CF2)n (n = 1, 3–5) and the new potassium fluoroalkanedisulfonates K2(O3S)2CHF, K2(O3S)2CF2, and K2(O3S)2(CF2)5 have been prepared by reaction of (CF2)n(SO2F)2 (n = 1, 3–5) or CHF(SO2F)2 with CaO (or Ca(OH)2) and M(OH)x (M = Ba, x = 2; M = K, x = 1) or with Ba(OH)2 alone (n = 1) in water. In each of the crystal structures of K2(O3S)2CHF and K2(O3S)2CF2, there is an eight‐coordinate and a six‐coordinate potassium ion, whilst in K2(O3S)2(CF2)3H2O, two different eight‐coordinate potassium ions are linked by a bridging water molecule. One potassium has additionally six sulfonate oxygen and one fluorine donor atoms, and the other, five sulfonate oxygens and two fluorine donor atoms. The preparation of highly crystalline [Nien3][(O3S)(CF2)n] (en = ethane‐1,2‐diamine; n = 1, 3–5) and the X‐ray crystal structures for n = 1 or 3 provide evidence for the value of perfluoroalkanedisulfonate ions as counter ions for the crystallization of cationic complexes.  相似文献   

7.
The crystal structures of Ce2[SeO3]3 and Pr2[SeO3]3 have been refined from X‐ray single‐crystal diffraction data. The compounds were obtained using stoichiometric mixtures of CeO2, SeO2, Ce, and CeCl3 (molar ratio 3:3:1:1) or Pr6O11, SeO2, Pr, and PrCl3 (molar ratio 3:27:1:2) heated in evacuated sealed silica tubes at 830 °C for one week. Ce2[SeO3]3 crystallizes orthorhombically (space group: Pnma), with four formula units per unit cell of the dimensions a = 839.23(5) pm, b = 1421.12(9) pm, and c = 704.58(4) pm. Its structure contains only a single crystallographically unique Ce3+ cation in tenfold coordination with oxygen atoms arranged as single‐face bicapped square antiprism and two different trigonal pyramidal [SeO3]2? groups. The connectivity among the [CeO10] polyhedra results in infinite sheets of face‐ and edge‐sharing units propagating normal to [001]. Pr2[SeO3]3 is monoclinic (space group: P21/n) with twelve formula units per unit cell of the dimensions a = 1683.76(9) pm, b = 705.38(4) pm, c = 2167.19(12) pm, and β = 102.063(7)°. Its structure exhibits six crystallographically distinct Pr3+ cations in nine‐ and tenfold coordination with oxygen atoms forming distorted capped square antiprisms or prisms (CN = 9), bicapped square antiprisms and tetracapped trigonal prisms (CN = 10), respectively. The [PrO9] and [PrO10] polyhedra form double layers parallel to (111) by edge‐ or face‐sharing, which are linked by nine different [SeO3]2? groups to build up a three‐dimensional framework. In both compounds, the discrete [SeO3]2? anions (d(Se4+–O2?) = 166–174 pm) show the typical Ψ1‐tetrahedral shape owing to the non‐bonding “lone‐pair” electrons at the central selenium(IV) particles. Moreover, their stereochemical “lone‐pair” activity seems to flock together in large empty channels running along [010] in the orthorhombic Ce2[SeO3]3 and along [101] in the monoclinic Pr2[SeO3]3 structure, respectively.  相似文献   

8.
3s-Gd2C2Br2: An Isomorph with a New Stacking Sequence Gd2C2Br2 has been described in [1]. Here we describe the new stacking variant 3s-Gd2C2Br2 prepared by reaction of stoichiometric amounts of GdBr3, Gd, and C at 1 320 K. 3s-Gd2C2Br2 with a stacking sequence different to that described in [1] crystallizes in space group C2/m with lattice constants a = 706.6(2) pm, b = 382.7(1) pm, c = 996.7(4) pm and β = 99.95(3)°. In the structure C2 units are octahedrally surrounded by Gd atoms. Such Gd6(C2) octahedra are condensed via edges to form sheets, which are separated by two layers of Br-ions. In contrast to the modification described previously three slabs BrGd(C2)GdBr are stacked in [103] direction until identity is reached. The isotypic 3s-Tb2C2Br2 has also been prepared at 1 370 K. It is characterized by the lattice constants a = 701.5(3) pm, b = 380.1(1) pm, c = 994.8(3) pm and β = 100.05°.  相似文献   

9.
The First Alkalinc Alkaline Earth Oxoniccolate(II,III): NaBa2Ni22+Ni3+O6 Single crystals of NaBa2Ni22+Ni3+O6 were prepared by solid state reaction. X-ray investigations led to orthorhombic symmetry, space group D-Fmmm; a = 8.310; b = 11.220; c = 14.397 Å; Z = 8. Na+ is coordinated by six O2? in form of a trigonal prism and the two Ba2+ point positions show different coordination numbers C.N. = 6 + 4 and 8. The Ni2+ /Ni3+ ions are in square planar polygons, six of them are forming a so far unknown closed macro polyhedra.  相似文献   

10.
Synthesis and Crystal Strucure of NaPr2F3(SO4)2 Light green single crystals of NaPr2F3(SO4)2 have been obtained by the reaction of Pr2(SO4)3 and NaF in sealed gold ampoules at 1050 °C. In the crystal structure (monoclinic, I2/a, Z = 4, a = 822.3(1), b = 692.12(7), c = 1419.9(2) pm, β = 95.88(2)°) Pr3+ is coordinated by four F ions and six oxygen atoms which belong to five SO4 ions. Thus, one of the latter acts as a bidentate ligand. The [PrO6F4] units are connected via three common fluoride ions to pairs with a Pr–Pr distance of 386 pm. Na+ is sevenfold coordinated by three fluorine and four oxygen atoms.  相似文献   

11.
A new microporous zirconogermanate, di­ammonium zirconium trigermanate, (NH4)2ZrGe3O9 (FDZG‐2), analogous to wadeite (K2ZrSi3O9), was hydro­thermally synthesized using ZrO(NO3)2·2H2O as the source of zirconium and 1,4‐di­amino­butane as a structure‐directing agent. Single‐crystal X‐ray diffraction analysis reveals that the framework structure is built up of cyclic trigermanate units crosslinked by ZrO6 octahedra. The Zr atom lies at a site with symmetry and the unique N atom of the ammonium ion lies at a site with threefold symmetry. Large cages are observed, with two NH4+ cations in each. The structure contains intersecting six‐ and three‐membered ring (6MR and 3MR) channels, but only the 6MR channels can accommodate the NH4+ ions.  相似文献   

12.
Synthesis and Structure of the Basic Alkaline Earth Nitrates Sr2(OH)3NO3 and Ba2(OH)3NO3 Sr2(OH)3NO3 and Ba2(OH)3NO3 were synthesized from mixtures of freshly prepared strontium or barium hydroxides and their corresponding nitrates in evacuated quartz glass ampoules at 420 °C and 360 °C, respectively. Single crystals of Sr2(OH)3NO3 were obtained in a solidified Sr(NO3)2 melt after subsequent heating and cooling cycles in air up to 600 °C. The crystal structure of the strontium compound was refined from single crystal and powder X‐ray data. Sr2(OH)3NO3 crystallizes hexagonally in the space group (No. 189) with Z = 1 and the lattice parameters a = 6.624(2) Å and c = 3.560(1) Å (single crystal data). The powder pattern of Ba2(OH)3NO3 was indexed isotypically to Sr2(OH)3NO3 with the lattice parameters a = 6.9260(1) Å and c = 3.8086(1) Å, and the crystal structure was refined from powder X‐ray data. Alkaline earth ions in the structures are surrounded trigonal‐prismatically by six hydroxide ions. These prisms are sharing their trigonal faces along [001] building up columns. These columns are connected in the ab‐plane by shared edges, and form hexagonal tunnels with the nitrate groups stacked inside. Infrared and thermoanalytical data of Sr2(OH)3NO3 are presented.  相似文献   

13.
Solvatothermal syntheses have been exploited to effect the isolation of three novel polyoxoalkoxometalate clusters, [{Fe(OH)(CH3CN)2} Fe6OCl6{(OCH2)3CCH2OH}4] (1), [Fe10O2Cl8{(OCH2)3CCH2CH3}6] (2), and [(VO)2Fe8O2Cl6{(OCH2)3CCH2CH3}6] (3). The structure of 1 may be described as a hexametalate core {Fe6OCl6}10+, consisting of a octahedral arrangement of chloride ligands encasing an octahedron of six Fe(III) sites, with a central oxo group. The remaining four coordination sites at each octahedral iron center are occupied by doubly bridging oxygen donors from the trisalkoxo ligands. One triangular face of this substructure, defined by three oxygen atoms, from three adjacent trisalkoxo ligands, is capped by the {Fe(OH)(CH3CN)2}2+ subunit. The structure of 2 is based on the decametalate core of edge-sharing octahedra. The eight peripheral Fe(III) sites of the cluster bond to four oxygen donors from the trisalkoxo ligands, a terminal Cl ligand, and one of the 6-oxo groups. The two central iron sites are linked to four oxygen donors from the trisalkoxo ligands and to both of the 6-oxo groups. Cluster 3 is structurally related to 2 with two {FeCl}2+ units replaced by {VO}2+ groups.  相似文献   

14.
Three new carbonate halides, Cs3Pb2(CO3)3I, KBa2(CO3)2F and RbBa2(CO3)2F have been synthesized with hydrothermal and solid‐state methods. Cs3Pb2(CO3)3I is the first product in the lead carbonate iodides family; KBa2(CO3)2F and RbBa2(CO3)2F are the first two centrosymmetric compounds found in the alkaline–alkaline earth carbonate fluorides family. Cs3Pb2(CO3)3I crystallizes in a centrosymmetric space group C2/m, and exhibits a two‐ dimensional layered structure which is formed by [Cs4Pb4(CO3)6I2] double‐layers consisting of [Pb2(CO3)3I] single‐layers bridged by the Cs atoms. KBa2(CO3)2F and RbBa2(CO3)2F, which are isostructural, crystallize in a trigonal crystal system with a centric space group of R featuring a honeycomb‐like framework. First principle calculations indicate that Cs3Pb2(CO3)3I has a moderate birefringence and explain the difference between the band gaps of the title compounds from electron structures. The effects of cations and halogens on the structures and properties of the title compounds are also discussed.  相似文献   

15.
Bis(tetraphenylphosphonium)‐tris(μ‐hydroxo)hexaaquatriberylliumpentachloride, (Ph4P)2[Be3(μ‐OH)3(H2O)6]Cl5 ( 1 ), was surprisingly obtained by reaction of (Ph4P)N3 · n H2O with BeCl2 in dichloromethane suspension and subsequent crystallization from acetonitrile to give single crystals of composition 1· 5.25CH3CN. According to the crystal structure determination space group P , Z = 2, lattice dimensions at 100 K: a = 1354.8(2), b = 1708.7(2), c = 1753.2(2) pm, α = 114.28(1)°, β = 94.80(1)°, γ = 104.51(1)°, R1 = 0.0586] the [Be3(μ‐OH)3(H2O)6]3+ cations form six‐mem‐bered Be3O3 rings with boat conformation and distorted tetrahedrally coordinated beryllium atoms with the terminally coordinated H2O molecules. The structure ist characterized by a complicated three dimensional hydrogen‐bridging network including O–H ··· O, O–H ··· Cl, and O–H ··· NCCH3 contacts. DFT calculations result in nearly planar [Be3(OH)3] six‐membered ring conformations.  相似文献   

16.
Gold Nitrogen Heterocycles. 3. Synthesis, Properties, and Structure of Amido Dimethyl Gold(III), [(CH3)2 AuNH2]3 The reaction of [(CH3)2AuI]2 with KNH2 in liquid NH3 yields tetrameric and trimeric amido dimethyl gold(III). The tetrameric form transforms at ambient temperature easily in the more stable trimeric complex. [(CH3)2AuNH2]3 forms air-stable, colorless crystals, which are sensitive against irridiation with light. It crystallizes in the orthorhombic space group Ama2 with the lattice constants a = 1653.4, b = 1844.4, c = 448.1 pm, Z = 4. In the trimeric complex the Au(CH3)2 groups are linked together by symmetrical amido bridges forming a six membered Au? N heterocycle in the chair conformation. The Au atoms exhibit a square-planar coordination of two CH3 groups (Au? C = 203 pm) and two N atoms (Au? N = 215 pm) in a cis arrangement. The symmetry C3v was confirmed for the complex in solution and in the solid state. The vibrational spectra as well as the H-NMR and mass spectra are discussed.  相似文献   

17.
《Vibrational Spectroscopy》2000,22(1-2):169-173
In the Y2O3:3Al2O3:4B2O3 system infrared absorption spectroscopy and X-ray diffraction have been used to study the solid-state reactions in the 600–1300°C temperature range. The expected YAl3(BO3)4 formation (whose optimum temperature is at about 1150°C) was proceeded and accompanied by the appearance of YBO3 and Al4B2O9 intermediate phases. At higher temperatures the Al18B4O33 phase was also identified with both methods. Based on these results, some chemical reactions were suggested.  相似文献   

18.
Crystal Structures of the Phosphaneimine Complexes [NaI(HNPPh3)3] and [SrI2(HNPPh3)2(THF)2], as well as of Sodium Triphenylphosphoraneiminate [NaNPPh3]6 [NaI(HNPPh3)3] ( 1 ) has been obtained as yellow, moisture sensitive crystals as an intermediate product of the synthesis of sodium triphenylphosphoraneiminate, [NaNPPh3]6 ( 2 ) from Ph3PI2 and sodium amide in liquid ammonia. Correspondingly, colourless crystals of [SrI2(HNPPh3)2(THF)2] ( 3 ) are formed from strontium amide and Ph3PI2 in liquid ammonia and subsequent recrystallisation of the primary product [SrI2(HNPPh3)4] from thf solution. The complexes 1 – 3 are mainly characterized by crystal structure determinations. 1 · 0,5 thf: space group P3c1, Z = 4, lattice dimensions at 193 K: a = b = 1533.2(1); c = 2545.6(1) pm, R = 0.0417. 1 has a molecular structure in which the sodium atom is tetrahedrally coordinated by the iodine atom with a distance of 315.9 pm and by the nitrogen atoms of the three HNPPh3 molecules with a distance of 238.9 pm. 2 · C7H8: space group P1, Z = 1, lattice dimensions at 213 K: a = 1457.1(1), b = 1484.9(1), c = 1502.7(1) pm; α = 116.32(1)°, β = 115.358(10)°, γ = 93.585(14)°; R = 0.0520. 2 has a molecular structure in which the six sodium atoms and the six nitrogen atoms of the (NPPh3) groups form a hexagonal prism with approximate D3d symmetry. 3 · 2 thf: space group P1, Z = 2, lattice dimensions at 193 K: a = 1042.9(1), b = 1337.4(1), c = 2095.1(1) pm; α = 90.130(8)°, β = 96.310(8)°, γ = 111.985(8)°; R = 0.0310. 3 has a molecular structure in which the strontium atom is octahedrally coordinated by the iodine atoms, by the nitrogen atoms of the HNPPh3 molecules and by the oxygen atoms of the thf molecules, all ligands being in trans‐position to one another.  相似文献   

19.
CsCu2Cl3 and CsCu2Br3 by Synproportionation at the Metallic Substrate CsCu2Cl3 and CsCu2Br3 are obtained as single crystals via a dry route by synproportionation of mixtures of CsX/2 CuX (X = Cl, Br) and CsCuCl3, respectively, with the copper of the surface of a closed copper cylinder as the metallic substrate. Lattice constants of CsCu2Cl3 (CsCu2Br3) are: a = 950.75(9) (987.3(1)), b = 1189.8(2) (1235.5(2)), c = 559.92(6) (581.80(9)) pm, orthorhombic, Cmcm, Z = 4. Details of the Cs? X polyhedra (X = Cl, Br, I) and the double chains of tetrahedra [Cu2X3]? in CsCu2Cl3, CsCu2Br3, and CsCu2I3 are compared.  相似文献   

20.
We have used a flow calorimeter and a flow densimeter for measurements leading to apparent molar heat capacities and apparent molar volumes of six 21 electrolytes in aqueous solution at 25°C. Results of these measurements have been used to derive apparent molar heat capacities and volumes at infinite dilution for all six electrolytes: CaCl2, Cd(NO3)2, CoCl2, Cu(ClO4)2, Mg(ClO4)2, and NiCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号