首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an approach to understanding the origin of inertia involving the electromagnetic component of the quantum vacuum and propose this as a step toward an alternative to Mach's principle. Preliminary analysis of the momentum flux of the classical electromagnetic zero-point radiation impinging on accelerated objects as viewed by an inertial observer suggests that the resistance to acceleration attributed to inertia may be at least in part a force of opposition originating in the vacuum. This analysis avoids the ad hoc modeling of particle-field interaction dynamics used previously by Haisch, Rueda, and Puthoff (Phys. Rev. A 49, 678, (1994)) to derive a similar result. This present approach is not dependent upon what happens at the particle point, but on how an external observer assesses the kinematical characteristics of the zero-point radiation impinging on the accelerated object. A relativistic form of the equation of motion results from the present analysis. Its manifestly covariant form yields a simple result that may be interpreted as a contribution to inertial mass. We note that our approach is related by the principle of equivalence to Sakharov's conjecture (Sov. Phys. Dokl. 12, 1040, (1968)) of a connection between Einstein action and the vacuum. The argument presented may thus be construed as a descendant of Sakharov's conjecture by which we attempt to attribute a mass-giving property to the electromagnetic component—and possibly other components—of the vacuum. In this view the physical momentum of an object is related to the radiative momentum flux of the vacuum instantaneously contained in the characteristic proper volume of the object. The interaction process between the accelerated object and the vacuum (akin to absorption or scattering of electromagnetic radiation) appears to generate a physical resistance (reaction force) to acceleration suggestive of what has been historically known as inertia.  相似文献   

2.
Over the past several years Haisch, Rueda, and others have made the claim that the origin of inertial reaction forces can be explained as the interaction of electrically charged elementary particles with the vacuum electromagnetic zero-point field expected on the basis of quantum field theory. After pointing out that this claim, in light of the fact that the inertial masses of the hadrons reside in the electrically chargeless, photon-like gluons that bind their constituent quarks, is untenable, the question of the role of quantum zero-point fields generally in the origin of inertia is explored. It is shown that, although non-gravitational zero-point fields might be the cause of the gravitational properties of normal matter, the action of non-gravitational zero-point fields cannot be the cause of inertial reaction forces. The gravitational origin of inertial reaction forces is then briefly revisited. Recent claims critical of the gravitational origin of inertial reaction forces by Haisch and his collaborators are then shown to be without merit.  相似文献   

3.
The possibility of an extrinsic origin for inertial reaction forces has recently seen increased attention in the physical literature. Among theories of extrinsic inertia, the two considered by the current work are (1) the hypothesis that inertia is a result of gravitational interactions and (2) the hypothesis that inertial reaction forces arise from the interaction of material particles with local fluctuations of the quantum vacuum. A recent article supporting the former and criticizing the latter is shown to contain substantial errors.  相似文献   

4.
A physical nature of inertia is discussed, and a hypothesis about its induction nature is put forward. According to this hypothesis, any body in motion, in addition to gravitational field, generates one more field called inertial. A change of this field induces inertial forces. It is proved that inertial and gravitational fields are interrelated, induce each other, and form a unified field similar to the electromagnetic field. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 37–42, July, 2006.  相似文献   

5.
In this paper we introduce a variational principle from which the fundamental equations of classical physics can be deduced. This principle permits a sort of unification of the gravitational and the electromagnetic fields. The basic point of this variational principle is that the world-line of a material point is parametrized by a parameter a which carries some physical information, namely it is related to the rest mass and to the charge. In particular, the (inertial) rest mass will not be a property of a material point, but it will be a constant of the motion which is determined by the initial conditions. In this framework the equality between the inertial and gravitational mass can be deduced.  相似文献   

6.
Even when the Higgs particle is finally detected, it will continue to be a legitimate question to ask whether the inertia of matter as a reaction force opposing acceleration is an intrinsic or extrinsic property of matter. General relativity specifies which geodesic path a free particle will follow, but geometrodynamics has no mechanism for generating a reaction force for deviation from geodesic motion. We discuss a different approach involving the electromagnetic zero‐point field (ZPF) of the quantum vacuum. It has been found that certain asymmetries arise in the ZPF as perceived from an accelerating reference frame. In such a frame the Poynting vector and momentum flux of the ZPF become non‐zero. Scattering of this quantum radiation by the quarks and electrons in matter can result in an acceleration‐dependent reaction force. Both the ordinary and the relativistic forms of Newton's second law, the equation of motion, can be derived from the electrodynamics of such ZPF‐particle interactions. Conjectural arguments are given why this interaction should take place in a resonance at the Compton frequency, and how this could simultaneously provide a physical basis for the de Broglie wavelength of a moving particle. This affords a suggestive perspective on a deep connection between electrodynamics, the origin of inertia and the quantum wave nature of matter.  相似文献   

7.
WU Ning 《理论物理通讯》2005,44(5):883-886
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field. The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides, it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field. The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.  相似文献   

8.
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.  相似文献   

9.
WU Ning 《理论物理通讯》2004,41(4):567-572
In 1992, E.E. Podkletnov and R. Nieminen found that under certain conditions, ceramic superconductor with composite structure reveals weak shielding properties against gravitational force. In classical Newton's theory of gravity and even in Einstein's general theory of gravity, there are no grounds of gravitational shielding effects. But in quantum gauge theory of gravity, the gravitational shielding effects can be explained in a simple and natural way. In quantum gauge theory of gravity, gravitational gauge interactions of complex scalar field can be formulated based on gauge principle. After spontaneous symmetry breaking, if the vacuum of the complex scalar field is not stable and uniform, there will be a mass term of gravitational gauge field. When gravitational gauge field propagates in this unstable vacuum of the complex scalar field, it will decays exponentially, which is the nature of gravitational shielding effects. The mechanism of gravitational shielding effects is studied in this paper, and some main properties of gravitational shielding effects are discussed.  相似文献   

10.
U. Kasper 《Annalen der Physik》1979,491(2):135-147
Subject is considered on the level of classical field theory. We start from some aspects of the theory of ferromagnets. Their counterpart in classical field theory is pointed out using the over simplified model of a selfinteracting scalar field. The ground state (“vacuum expection value”) of the scalar field is interpreted as cosmic background field, which can be considered as constant for local physical phenomena. In practice, however, it is a function of the age of universe. Which kind of function it could be is suggested by a discussion of the cosmic variability of Eddington's number γ = 1040, which refers to Dirac's consideration of this problem. But contrary to Dirac's assumption that atomic quantities are constant, we suppose that the inertial mass of elementary particles is a function of the age of universe. The cosmic gravitational field is described by other equations than the gravitational field created by local matter distributions. The field equations for the local gravitational field we start from reduce to Einstein's equations, if we neglect the possible influence of the universe on local phenomena. In case that the cosmic matter is homogeneously and isotropically distributed, the field equations for the cosmic gravitational field permit only such a time dependent solution the three-spaces of which are linearly expanding and spherically closed. The different field equations for cosmic and local gravitational fields are considered approximations of more fundamental field equations which approximately split into two sets of equations, if it is possible to contrast local physical systems with the universe. The described cosmological model taken as a basis, the inertial mass of elementary particles becomes a function of the matter density creating the cosmic gravitational field. This could be considered as, at least, partly realisation of Mach's idea concerning the origin of inertia. Starting from the interpretation of the ground state (vacuum expection value) as a function of a certain cosmic background field, more realistic gage field models could give the following picture of cosmic development: In the far past there was a state of the universe characterized by enormous contraction of matter. In this stage of development, it was impossible to contrast particles with the universe. Matter expands and it becomes possible to contrast certain physical systems with the universe. But the ground state is such a symmetric one that only fields with vanishing rest mass can be contrasted with the universe (ferromagnet above Curie temperature). With further expansion of the universe the ground state will lose certain symmetry properties. By this it becomes possible that you get the impression there are particles with nonvanishing rest mass (ferromagnet below Curie temperature). Finally, the influence of the universe on local physical systems goes to zero with further expansion. Especially, this means the inertial mass of elementary particles goes to zero, too (Curie temperature of ferromagnetic material goes to zero with cosmic expansion).  相似文献   

11.
We define passive gravitational mass operator of a hydrogen atom in the post-Newtonian approximation of general relativity and show that it does not commute with energy operator, taken in the absence of gravitational field. Nevertheless, the equivalence between the expectation values of passive gravitational mass and energy is shown to survive for stationary quantum states. Inequivalence between passive gravitational mass and energy at a macroscopic level results in time dependent oscillations of the expectation values of passive gravitational mass for superpositions of stationary quantum states, where the equivalence restores after averaging over time. Inequivalence between gravitational mass and energy at a microscopic level reveals itself as unusual electromagnetic radiation, emitted by the atoms, supported and moved in the Earth gravitational field with constant velocity using spacecraft or satellite, which can be experimentally measured.  相似文献   

12.
By using the principle of metrical invariance which requires that all physical laws are independent of the choice of units (alternatively, all physical laws are invariant with respect to scale transformations of space-time coordinates) and Goldstone's theorem, a universal regulator is discovered. The cosmic field is the Yang-Mills field of the local scale transformations. Its physical role is as follows. Cosmon, its quantum, is a massless, spinless, and neutral particle. The cosmic field is created by inertial masses. Therefore it participates in all physical processes and if its presence is taken into account, then the quantum field theory is free from all ultraviolet infinities. From the point of view of Yang-Mills field theory, it is proved that the so-called gravitational masses are identical with inertial masses and the gravitational field is created by inertial masses moving non-inertially. This fact permits to solve satisfactorily the problem of energy-momentum complex of the gravitational field. The system of equations which defines simultaneously the cosmic and gravitational fields is established. A non-Einstein cosmology is outlined.  相似文献   

13.
This work starts by generalizing in a gravitational field the fundamental quantum mechanical commutation relations between the coordinates of a charged test particle and its momentum. Assuming that the components of the momentum of this test charge obey a noncommutative algebra in the presence of an electromagnetic field, it is proved that the commutator can be identified with the electromagnetic field tensor. Using these results, the equation of motion of this charged object in the presence of both the electromagnetic and gravitational fields is derived from their field equations. In this work, the laws of motion of a particle in the electromagnetic and gravitational fields has been unified with the field equations. Although the field equations themselves are not directly unified, this work strongly suggests that the scheme may act as a possible framework for the unification of at least gravitational and electromagnetic interactions.  相似文献   

14.
The paper aims to apply the complex octonion to explore the influence of the energy gradient on the Eötvös experiment, impacting the gravitational mass in the ultra-strong magnetic fields. Until now the Eötvös experiment has never been validated under the ultra-strong magnetic field. It is aggravating the existing serious qualms about the Eötvös experiment. According to the electromagnetic and gravitational theory described with the complex octonions, the ultra-strong magnetic field must result in a tiny variation of the gravitational mass. The magnetic field with the gradient distribution will generate the energy gradient. These influencing factors will exert an influence on the state of equilibrium in the Eötvös experiment. That is, the gravitational mass will depart from the inertial mass to a certain extent, in the ultra-strong magnetic fields. Only under exceptional circumstances, especially in the case of the weak field strength, the gravitational mass may be equal to the inertial mass approximately. The paper appeals intensely to validate the Eötvös experiment in the ultra-strong electromagnetic strengths. It is predicted that the physical property of gravitational mass will be distinct from that of inertial mass.  相似文献   

15.
Relativistic dynamics of distributed mass and charge densities of the extended classical particle is considered for arbitrary gravitational and electromagnetic fields. Both geodesic and field gravitational equations can be derived by variation of the same Lagrange density in the classical action of a nonlocal particle distributed over its radial field. Vector geodesic relations for material space densities are contraction consequences of tensor gravitational equations for continuous sources and their fields. Classical four-flows of elementary material space depend on local electromagnetic fourpotentials for charged densities, as in quantum theory. Besides the Lorentz force, these potentials result in two more accelerating factors vanishing under equilibrium internal stresses within the continuous particle.  相似文献   

16.
The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.  相似文献   

17.
A new variational principle based on the affine connection in space-time is proposed. This leads to a new formulation of general relativity. The gravitational field is a field of inertial frames in space-time. The metricg appears as a momentum canonically conjugate to the gravitational field. In the case of simple matter fields, e.g., scalar fields, electromagnetic fields, Proca fields, or hydrodynamical matter, the new formulation is equivalent to the traditional one. A new formulation of conservation laws is proposed.  相似文献   

18.
Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which 1. all Galaxies in the Universe “disperse” from each other according to Hubble's law, 2. the “dispersion” of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, 3. for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximalinertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational “annihilation”. At the maximal value of inertial and gravitational potentials (= c2) the material mass is being completely “evaporated” transforming into radiation mass. The latter is being concentrated in the “horizon” of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is “wrapped” in a geon crown.  相似文献   

19.
This paper addresses the origin of the forces of inertia. It proposes a Newton-Mach particle interaction force between all pairs of particles that depends on their relative acceleration and is proportional to the gravitational force between them. The motion of all objects therefore becomes directly influenced by all of the matter in the universe, as prescribed by Mach's principle. The effect of the observed hierarchical structure of the universe is considered and is used to ensure that the inertial force on an object is finite and isotropic. The instantaneous matter interaction force is justified and both Einstein's and Mach's objections to a Newtonian framework are discussed and shown to be absorbed by the proposed universal law of inertia.  相似文献   

20.
We analyze a new class of static exact solutions of Einstein-Maxwell-Dilaton gravity with arbitrary scalar coupling constant , representing a gravitational body endowed with electromagnetic dipole moment. This class possesses mass, dipole and scalar charge parameters. A discussion of the geodesic motion shows that the scalar field interaction is so weak that it cannot be measured in gravitational fields like the sun, but it could perhaps be detected in gravitational fields like pulsars. The scalar force can be attractive or repulsive. This gives rise to the hypothesis that the magnetic field of some astrophysical objects could be fundamental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号