共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the in vitro immunotoxicity of synthetically pure arsenobetaine [AsBe; trimethyl (carboxymethyl) arsonium zwitterion], which is a major organic arsenic compound in seafood, on various human immune cells, such as peripheral blood monocytes, monocyte‐derived macrophages and monocyte‐derived dendritic cells (DCs). In particular, we examine the differentiation of monocytes into macrophages or DCs by comparing the effects of AsBe with those pentavalent inorganic arsenate. AsBe neither enhanced nor inhibited the differentiation of human monocytes into macrophages or DCs, and also did not affect their various immune functions. Furthermore, AsBe had no cytolethality in monocyte‐derived macrophages or DCs even at a concentration of 5 mmol l−1. In contrast, inorganic arsenate showed strong cytolethality in these human immune cells in vitro at micromolar concentrations. These data indicate that the organic arsenic compound AsBe in seafood has no in vitro immunotoxicity in human immune cells. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Marta Ventura Narcisa Maria Bandarra Inês Delgado Inês Coelho Sandra Gueifão 《International journal of environmental analytical chemistry》2018,98(15):1398-1412
ABSTRACTThis study endeavoured to provide an overview of the bromine, Br, arsenic (As, a metalloid) and metal (cadmium, Cd, and lead, Pb) relative risk associated with the consumption of relevant food groups (lean fish, fatty fish, bivalves, cephalopods, fresh fruit, dried fruit, and green vegetables) in Portugal. Though As, Cd, and Pb have been frequently studied, a comprehensive overview applying the same state-of-the-art methodology to a wide array of foods is missing. Besides, there is a large deficit of content information and risk assessment studies on Br. Thus, it is important to apply a mathematically realistic and innovative methodology (extreme value theory) to recent and accurate databases for the aforementioned food groups and elements.Best fits to Br, As (total), Cd, and Pb concentrations were attained through different functions, ranging from the normal distribution to the Weibull distribution. A semi-probabilistic risk assessment approach on the basis of four alternative scenarios (one monthly meal; one weekly meal; three weekly meals; one daily meal) showed low relative risk regarding Br and Pb in the selected food groups, including bivalves, which contained the highest Br and Pb contents. With respect to total As, high relative risk values were calculated for seafood, but it should be emphasized that this As is overwhelmingly organic, thus presenting low risk. For Cd, substantial relative risk associated with bivalves’ and cephalopods’ consumption, particularly with one or more weekly meal(s), was found. However, the current study enables us to compare between the relative risk of the studied food groups and scenarios, and other studies encompassing the whole diet and following long-term dietary patterns are needed for the assessment of absolute risk. 相似文献
3.
A method for the separation and identification of inorganic and methylated arsenic compounds in marine organisms was constructed by using a hydride generation/cold trap/gas chromatography mass spectrometry (HG/CT/GC MS) measurement system. The chemical form of arsenic compounds in marine organisms was examined by the HG/CT/GC MS system after alkaline digestion. It was observed that trimethylarsenic compounds were distributed mainly in the water-soluble fraction of muscle of carnivorous gastropods, crustaceans and fish. Also, dimethylated arsenic compounds were distributed in the water-soluble fraction of Phaeophyceae. It is thought that most of the trimethylated arsenic is likely to be arsenobetaine since this compound released trimethylarsine by alkaline digestion and subsequent reduction with sodium borohydride. The major arsenic compound isolated from the water-soluble fraction in the muscle and liver of sharks was identified as arsenobetaine from IR, FAB Ms data, NMR spectra and TLC behaviour. The acute toxicity of arsenobetaine was studied in male mice. The LD50 value was higher than 10 g kg−1. This compound was found in urine in the non-metabolized form. No particular toxic symptoms were observed following administration. These results suggest that arsenobetaine has low toxicity and is not metabolized in mice. The LD50 values of other minor arsenicals in marine organisms, trimethylarsine oxide, arsenocholine and tetramethylarsonium salt, were also examined in mice. 相似文献
4.
分别将N-(β氨乙基)-?-氨丙基三甲氧基硅烷(AEAPTMS)、3-巯丙基三甲氧基硅烷(MPTMS)与四乙氧基硅烷(TEOS)水解共聚,制备氨基\巯基键合的硅胶材料。将此材料作为固相萃取(SPE)小柱的填充材料,建立了固相萃取快速分离富集海产品样品中五价砷As(Ⅴ)和三价砷As(Ⅲ)电感耦合等离子体质谱法(ICP-MS)测定海产品中无机砷的方法。研究了固相萃取小柱对无机砷的吸附原理、性能和洗脱条件,在pH3~4范围内固相萃取小柱材料有良好的选择吸附性,利用2%硝酸可将As(Ⅴ)洗脱,利用2%硝酸+0.1mol/L KIO3可将As(Ⅲ)洗脱。实际样品检测的加标回收率在72~103%之间,方法实现了海产品样品中无机砷形态快速、方便、准确的检测。 相似文献
5.
The chemical form of arsenic contained in the muscle of certain freshwater fish was examined using cultured specimens of rainbow trout (Salmo gairdneri) and wild specimens of Japanese smelt (Hypomesus nipponensis). More than 95% of the total arsenic of both species was extracted with methanol and recovered in the water-soluble fraction. The major arsenic compound of both species was purified by cation-exchange chromatography on Dowex 50, gel filtration on Bio-Gel P-2 and HPLC on Asahipak GS-220H. Behavior in the above purification procedure and analyses of the purified compounds by HPLC–ICP and TLC confirmed that the major arsenic compound of both species was arsenobetaine. Arsenobetaine found in cultured rainbow trout seems to be derived from the commercial assorted feed containing arsenobetaine as the major arsenical. On the other hand, the result with wild Japanese smelt suggested that arsenobetaine is a naturally occurring compound in the freshwater environment. 相似文献
6.
Polyphysa peniculus was grown in artificial seawater in the presence of arsenate, arsenite, monomethylarsonate and dimethylarsinic acid. The separation and identification of some of the arsenic species produced in the cells as well as in the growth medium were achieved by using hydride generation–gas chromatography–atomic absorption spectrometry methodology. Arsenite and dimethylarsinate were detected following incubation with arsenate. When the alga was treated with arsenite, dimethylarsinate was the major metabolite in the cells and in the growth medium; trace amounts of monomethylarsonate were also detected in the cells. With monomethylarsonate as a substrate, the metabolite is dimethylarsinate. Polyphysa peniculus did not metabolize dimethylarsinic acid when it was used as a substrate. Significant amounts of more complex arsenic species, such as arsenosungars, were not observed in the cells or medium on the evidence of flow injection–microwave digestion–hydride generation–atomic absorption spectrometry methodology. Transfer of the exposed cells to fresh medium caused release of most cell–associated arsenicals to the surrounding environment. 相似文献
7.
Total arsenic concentrations and the concentrations of individual arsenic compounds were determined in liver samples of pinnipeds [nine ringed seals (Phoca hispida), one bearded seal (Erginathus barbatus)] and cetaceans [two pilot whales (Globicephalus melas), one beluga whale (Deliphinapterus leucus)]. Total arsenic concentrations ranged from 0.167 to 2.40 mg As kg−1 wet mass. The arsenic compounds extracted from the liver samples with a methanol/water mixture (9:1, v/v) were identified and quantified by anion- and cation-exchange chromatography. An ICP–MS equipped with a hydraulic high-pressure nebulizer served as the arsenic-specific detector. Arsenobetaine (0.052–1.67 mg As kg−1 wet mass) was the predominant arsenic compound in all the liver samples. Arsenocholine was present in all livers (0.005–0.044 mg As kg−1 wet mass). The tetramethylarsonium cation was detected in all pinnipeds ( < 0.009 to 0.043 mg As kg−1) but not in any of the cetaceans. The concentration of dimethylarsinic acid ranged from < 0.001 to 0.109 mg As kg−1 wet mass. Most of the concentrations for methylarsonic acid ( < 0.001 to 0.025 mg As kg−1 wet mass) were below the detection limit. Arsenous acid and arsenic acid concentrations were below the detection limit of the method (0.001 mg As kg−1). An unknown arsenic compound was present in all liver samples at concentrations from 0.002–0.027 mg As kg−1. © 1998 John Wiley & Sons, Ltd. 相似文献
8.
Mariko Miyajima Noriaki Hamada Etsuro Yoshimura Akira Okubo Sunao Yamazaki Shozo Toda 《应用有机金属化学》1988,2(4):377-384
Homogenized aliquots (100 g) of the liver (8.4 kg, 5 m?g As g?1) of a tiger shark (Galeocerdo cuvier) were extracted with chloroform/methanol, and the extracts purified by countercurrent extraction (hexane/87% ethanol), silica gel column chromatography (chloroform/methanol mixtures as mobile phases), and silica gel thin-layer chromatography (chloroform/methanol/acetic acid). The purified samples (24 mg arsenic g?1) gave no 31P NMR signal, but gave 1H and 13C NMR signals with similarities to those of dipalmitoylphosphatidic acid and salad on and also signals indicative of the presence of methylated arsenic compounds. The sample could contain a diacyl glyceride with a methylated arsenic group. 相似文献
9.
Toshikazu Kaise Takafumi Ochi Yukiko Oya-Ohta Ken'ichi Hanaoka Teruaki Sakurai Tohru Saitoh Chiyo Matsubara 《应用有机金属化学》1998,12(2):137-143
Arsenobetaine, arsenocholine, trimethylarsine oxide and tetramethylarsonium iodide, which are contained in marine fishery products, were examined for their potencies on cell growth inhibition, chromosomal aberration and sister chromatid exchange (SCE). Arseno- betaine, the major water-soluble organic arsenic compound in marine animals, exhibited very low cytotoxicity towards mammalian cells. This compound showed no cell growth inhibition at a concentration of 10 mg cm−3 and the cytotoxicity was lower than 1/14 000th of that of sodium arsenite and 1/1600th of that of sodium arsenate towards BALB/c 3T3 cells. The chromosomal aberrations caused by arsenobetaine at a concentration of 10 mg cm−3 consisted mainly of chromatid gaps and chromatid breaks, but in this concentration chromosomal breakage owing to its osmotic pressure is likely to be considerable. No SCE was observed at a concentration of 1 mg cm−3. Arsenocholine and trimethylarsine oxide also showed no cell growth inhibited at a concentration of 10 mg cm−3. However, tetramethylarsonium iodide inhibition the growth of BALB/c 3T3 at a concentration of 8 mg cm−3. These compounds exhibited a low ability to induce chromosomal aberrations at a concentration range of 2–10 mg cm−3 and no SCE was observed at a concentration of 1.0 mg cm−3. These results suggested that the major and minor organic arsenic compounds contained in marine fishery products are much less cytotoxic inorganic arsenic, methylarsonic acid and dimethylarsinic acid. © 1998 John Wiley & Sons, Ltd. 相似文献
10.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd. 相似文献
11.
How the various organic and inorganic arsenic species affect the nitrogen metabolism of a model plant, Tropaeolum majus, was studied in order to evaluate the toxicological impact of the various chemical forms of arsenic. For this purpose, the effects on the (a) entire nitrogen pool, (b) protein fraction, and (c) non‐protein fraction were distinguished. The arsenic‐dependent effects on the nitrogen cycle were assessed by using 15N‐labelled KNO3 as a nutritive substance and optical emission spectroscopy to analyse how 15N is incorporated into the nitrogen cycle. In addition to the 15N‐tracer experiments, the uptake and metabolization of the arsenic compounds were examined. The work shows that biochemical indicator systems like 15N‐tracer studies are able to characterize the degree of the influence of metabolic processes by arsenic species. For example, the incorporated 15N concentration decreased linearly and independently of the 15N fraction with increasing dimethylarsinate (DMA) concentrations. This behaviour indicates that DMA has prevented the uptake of 15N and hence the formation of amino acids and proteins. Arsenite‐treated plants exhibited an elevated concentration of non‐protein 15N, which could be an indication either for a stimulated uptake of nitrate or for an interrupted amino acid/protein synthesis. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
12.
We have studied the generation of arsenic hydride on a fly ash slurry from a thermal power plant burning lignite. The conditions for the formation of the slurry were optimized and the influence of the presence of various surfactants on the formation and stability of slurry (particle size-analytical signal ratio) were investigated.The As content in the ash was 78.7 g/g, with an rsd of 5.6% and a detection limit of 2.8 ng. The proposed method was successfully applied to the determination of arsenic in a certified ash sample (BCR-38). This method was applied to fly ash from a thermal power plant burning anthracite. 相似文献
13.
The toxicity of inorganic trivalent arsenic for living organisms is reduced by in vivo methylation of the element. In man, this biotransformation leads to the synthesis of monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are efficiently eliminated in urine along with the unchanged form (Asi). In order to document the methylation process in humans, the kinetics of Asi, MMA and DMA elimination were studied in volunteers given a single dose of one of these three arsenicals or repeated doses of Asi. The arsenic methylation efficiency was also assessed in subjects acutely intoxicated with arsenic trioxide (As2O3) and in patients with liver diseases. Several observations in humans can be explained by the properties of the enzymic systems involved in the methylation process which we have characterized in vitro and in vivo in rats as follows: (1) production of Asi metabolites is catalyzed by an enzymic system whose activity is highest in liver cytosol; (2) different enzymic activities, using the same methyl group donor (S-adenosylmethionine), lead to the production of mono- and di-methylated derivatives which are excreted in urine as MMA and DMA; (3) dimethylating activity is highly sensitive to inhibition by excess of inorganic arsenic; (4) reduced glutathione concentration in liver moderates the arsenic methylation process through several mechanisms, e.g. stimulation of the first methylation reaction leading to MMA, facilitation of Asi uptake by hepatocytes, stimulation of the biliary excretion of the element, reduction of pentavalent forms before methylation, and protection of a reducing environment in the cells necessary to maintain the activity of the enzymic systems. 相似文献
14.
V. Devesa M. A. Súer V. W.‐M. Lai S. C. R. Granchinho J. M. Martínez D. Vlez W. R. Cullen R. Montoro 《应用有机金属化学》2002,16(3):123-132
The arsenic species present in samples of the crayfish Procambarus clarkii caught in the area affected by the toxic mine‐tailing spill at Aznalcóllar (Seville, Southern Spain) were analyzed. The total arsenic contents ranged between 1.2 and 8.5 µg g?1 dry mass (DM). With regard to the different species of arsenic, the highest concentrations were for inorganic arsenic (0.34–5.4 µg g?1 DM), whereas arsenobetaine, unlike the situation found in marine fish products, was not the major arsenic species (0.16 ± 0.09 µg g?1 DM). Smaller concentrations were found of arsenosugars 1a (0.18 ± 0.11 µg g?1 DM), 1b (0.077 ± 0.049 µg g?1 DM), 1c (0.080 ± 0.089 µg g?1 DM), and 1d (0.14 ± 0.13 µg g?1 DM). The presence of two unknown arsenic species was revealed (U1: 0.058 ± 0.058 µg g?1 DM; U2: 0.12 ± 0.12 µg g?1 DM). No significant differences were seen with respect to the total arsenic contents between the sexes. However, significant differences in the total arsenic contents were revealed between the area affected by the spill and the area not affected, the contents being greater in the affected area. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
15.
To investigate the effect of cadmium on the accumulation of arsenic by Dunaliella sp., the arsenic accumulated in the alga was determined as a function of time for coexistence of the algae with arsenic and cadmium, with batch methodology. Growth of Dunaliella sp. was affected by addition of arsenic (Na2HAsO4.7H2O) and cadmium (CdCl.2.5H2O). Growth inhibition of Dunaliella sp. was accelerated by coexistence of arsenic and cadmium. The content of arsenic in Dunaliella sp. became a maximum at 15 h after exposure. The arsenic content in the cells was influenced by addition of cadmium to the solution; the arsenic content in the alga derived from growth in a 10 mg As dm ?3 solution decreased from 2.7 mg g?1 in the absence of cadmium to 0.35 mg g?1 for the addition of 100 mg Cd dm?3. Dunaliella sp. accumulated cadmium in large quantities but, in conditions of coexistence with arsenic and cadmium, the cadmium content in cells decreased with an increase in the concentration of arsenic in the growth medium Cadmium accumulation by Dunaliella sp. was observed in dead cells although arsenic accumulation was not observed. About 85% of arsenic in the cells was in the water-soluble fraction. On the other hand, about 42% of cadmium in the cells was in the water-soluble fraction, and about 55% was in a fraction soluble in cold trichloroacetic acid. 相似文献
16.
云南阳宗海砷污染事件引起社会广泛关注.为了解事件发生后阳宗海砷污染水平及变化趋势,分别于2008年12月、2009年2月、5月及9月四次采样,研究了阳宗海湖水、底泥、周边井水、土壤、农作物及水生生物中的砷含量及其变化趋势.研究结果显示:湖水平均砷浓度分别为176.9、147.3、159.3和161.1μg/L(算术平均),底泥平均浓度分别为32.87、62.41、62.99和46.96μg/g(算术平均).阳宗海湖水砷浓度经历了先升后降再到平稳的变化过程,底泥砷含量迅速升高后缓慢下降,湖水和底泥间砷交换还在进行.阳宗海附近土壤中砷最高浓度为23.33μg/g,未超过国家土壤环境质量三级标准.大米、玉米、花椰菜、小油菜等农作物可食用部分中砷的最高值为0.35μg/g,均未超过国家无公害食品标准.水生植物中砷水平大多在100~200μg/g之间,最高为苦草,砷含量超过300μg/g,说明该植物对砷有一定的富集能力.虾、鱼类等可食用水生动物砷浓度范围为1.52~11.4μg/g. 相似文献
17.
A study of the adsorptive stripping voltammetry of nickel, aluminium, selenium and arsenic is reported in which 2,5-dimercapto-1,3,4-thiadiazole (DMTD) has been used as a chelating agent. By a suitable choice of deposition potential, deposition time, reagent reaction time and other operating conditions, the determination of the four elements could be achieved.By the use of benzyltrimethyl ammonium methoxide as a digesting solvent, it was possible to apply the procedure to the direct determination of the four elements in biological samples. 相似文献
18.
Arsenic contamination of groundwater has long been reported in the Mushidabad district of West Bengal, India. We visited 13 arsenic‐affected families in the Makrampur village of the Beldanga block in Mushidabad during 18–21 December 2001 and collected five shallow tubewell‐water samples used general household purposes, four deep tubewell‐water samples used for drinking and cooking purposes, and 44 urine samples from those families. The arsenic concentrations in the five shallow tubewell‐water samples ranged from 18.0 to 408.4 ppb and those in the four deep tubewell‐water samples were from 5.2 to 9.6 ppb. The average arsenite (arsenic(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate (arsenic(V)) in urine were 28.7 ng mg?1, 168.6 ng mg?1, 25.0 ng mg?1 and 4.6 ng mg?1 creatinine respectively. The average total arsenic was 227.0 ng mg?1 creatinine. On comparison of the ratio of (MMA + DMA) to total arsenic, the average proportion was 86.7 ± 9.2% (mean plus/minus to residual standard deviation, n = 43). The exception was data for one boy, whose proportion was 8.0%. One woman excreted the highest total arsenic, at 2890.0 ng mg?1 creatinine. When using 43 of the urine samples (the exception being the one sample obtained from the boy) there were significantly positive correlations (p < 0.01) between arsenic(III) and MMA, between arsenic(III) and DMA and between MMA and DMA. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
Five closed-vessel microwave digestion methods were compared for the accurate determination of arsenic and selenium in NIST SRM 1645 River Sediment by flow-injection hydride-generation atomic absorption spectrometric methods. The digestion methods using five different acid mixtures (HNO3/ H2SO4, HNO3/HCl04, HNO3/HCl, HNO3/HCl/HF, HNO3/H2SO4/HClO4) were all found to be reliable for the determination of the analytes. Taking into consideration the safety and suitability for the analysis of other metals, the methods based on the use ofaqua regia are recommended for closed vessel microwave digestion with pressure control. Using the quick digestion program, the presence of up to 10% organic content in soil samples did not adversely affect the closed vessel digestion and did not cause the loss of volatile analytes. After digestion, opening the vessel under an inner pressure of below 345 kPa (50 psi) had no effect on the accuracy of the results. The recommended digestion methods (HNO3/HCl and HNO3/ HCl/HF) for the reliable determination of arsenic and selenium in different sediment samples were demonstrated. The calculated detection limits (3
b
) were less than 0.030 g/g and 0.033 g/g for arsenic and selenium, respectively. All analytical results for arsenic and selenium in SRM 1645 River sediment, NRCC BCSS-1 Marine Sediment and NIES CRM Pond Sediment were within or near the certified and reported ranges, with the exception of selenium in NIES CRM No. 2 Pond Sediment. 相似文献
20.
Tolerance bioaccumulation and biotransformation of arsenic compounds by a freshwater prawn (Macrobrachium rosenbergii) were investigated. M. rosenbergii was exposed to 10, 20, 30 and 35 μg As cm−3 of disodium arsenate [abbreviated as As(V)], 25, 50, 100 and 120 μg As cm−3 of methylarsonic acid (MMAA), or 100,200, 300 and 350 μg As cm−3 of dimethylarsinic acid (DMAA). Tolerances (50% lethal concentration: LC50) of the prawn against As(V), MMAA, and DMAA were 30, 100, and 300 μg As cm−3, respectively. The prawn accumulated arsenic compounds directly from aqueous phase and biotransformed them in part. Both methylation and demethylation of the arsenicals were observed in vivo. Highly methylated and less toxic arsenicals were less accumulated in M. rosenbergii. 相似文献