首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the crystal structure of (R)‐N,N‐diisopropyl‐3‐(2‐hydroxy‐5‐methyl­phenyl)‐3‐phenyl­propyl­aminium (2R,3R)‐hydrogen tartrate, C22H32NO+·C4H5O6, the hydrogen tartrate anions are linked by O—H⋯O hydrogen bonds to form helical chains built from (9) rings. These chains are linked by the tolterodine molecules via N—H⋯O and O—H⋯O hydrogen bonds to form separate sheets parallel to the (101) plane.  相似文献   

2.
In each of 6‐amino‐3‐methyl‐2‐(morpholin‐4‐yl)‐5‐nitrosopyrimidin‐4(3H)‐one, C9H13N5O3, (I), morpholin‐4‐ium 4‐amino‐2‐(morpholin‐4‐yl)‐5‐nitroso‐6‐oxo‐1,6‐dihydropyrimidin‐1‐ide, C4H10NO+·C8H10N5O3, (II), and 6‐amino‐2‐(morpholin‐4‐yl)‐5‐nitrosopyrimidin‐4(3H)‐one hemihydrate, C8H11N5O3·0.5H2O, (III), the bond distances within the pyrimidine components are consistent with significant electronic polarization, which is most marked in (II) and least marked in (I). Despite the high level of substitution, the pyrimidine rings are all effectively planar, and in each of the pyrimidine components, there are intramolecular N—H...O hydrogen bonds. In each compound, the organic components are linked by multiple N—H...O hydrogen bonds to form sheets of widely differing construction, and in compound (III) adjacent sheets are linked by the water molecules, so forming a three‐dimensional hydrogen‐bonded framework. This study also contains the first direct geometric comparison between the electronic polarization in a neutral aminonitrosopyrimidine and that in its ring‐deprotonated conjugate anion in a metal‐free environment.  相似文献   

3.
The crystal structures of two (E)‐stilbazolium salts, namely 1‐(2‐chlorobenzyl)‐4‐[(E)‐2‐(3‐hydroxyphenyl)ethenyl]pyridinium chloride hemihydrate, C20H17ClNO+·Cl·0.5H2O, (I), and 1‐(2‐bromobenzyl)‐4‐[(E)‐2‐(3‐hydroxyphenyl)ethenyl]pyridinium bromide hemihydrate, C20H17BrNO+·Br·0.5H2O, (II), are isomorphous; the isostructurality index is 99.3%. In both salts, the azastyryl fragments are almost planar, while the rings of the benzyl groups are almost perpendicular to the azastyryl planes. The building blocks of the structures are twofold symmetric hydrogen‐bonded systems of two cations, two halide anions and one water molecule, which lies on a twofold axis. In the crystal structure, these blocks are connected by means of weaker interactions, viz. van der Waals, weak hydrogen bonding and stacking. This study illustrates the robustness of certain supramolecular motifs created by a spectrum of intermolecular interactions in generating these isomorphous crystal structures.  相似文献   

4.
The analysis of the title compound, [Mg(H2O)6](C7H8N5O4)2·2H2O, continues our study of the reactivity of metal ions with N‐protected amino acids. The Mg ion lies on an inversion centre with Mg—O 2.0437 (10)‐2.0952 (10) Å. The [Mg(H2O)6]2+cations, anions and water mol­ecules are linked by an extensive hydrogen‐bond network.  相似文献   

5.
Two new complexes of the Ln2(oda)3·nH2O (oda =–O2CCH2OCH2CO2–) series are reported, i.e. {[Pr2(C4H4O5)3(H2O)3]·5H2O}n and {[Nd2(C4H4O5)3(H2O)6]·C4H6O5·‐2H2O}n. The former is isostructural with the reported La analogue, while the latter is a new structural variety within the series. Each compound exhibits two independent nine‐coordinated Ln centres showing a variety of coordination geometries.  相似文献   

6.
The title compound, [Zn(C8H5O4)2(C10H8N2)2], was obtained by the hydro­thermal reaction of ZnSO4·7H2O with phthalic acid (H2pht) and 4,4′‐bi­pyridine (4,4′‐bipy). Crystallographic analysis shows that it has a one‐dimensional double‐chain structure via hydrogen‐bonding interactions. Each ZnII atom, adopting a distorted tetrahedral geometry, is coordinated by two N atoms from two 4,4′‐bipy ligands, with Zn—N distances of 2.054 (4) and 2.104 (4) Å, and by two O atoms from symmetry‐related Hpht ligands, with Zn—O distances of 1.921 (4) and 2.019 (4) Å.  相似文献   

7.
The structures of the anhydrous 1:1 proton‐transfer compounds of the dye precursor aniline yellow [4‐(phenyldiazenyl)aniline], namely isomeric 4‐(phenyldiazenyl)anilinium 2‐carboxy‐6‐nitrobenzoate, C12H12N3+·C8H4NO6, (I), and 4‐(phenyldiazenyl)anilinium 2‐carboxy‐4‐nitrobenzoate, C12H12N3+·C8H4NO6, (II), and 4‐(phenyldiazenyl)anilinium 3‐carboxy‐5‐nitrobenzoate monohydrate, C12H12N3+·C8H4NO6·H2O, (III), have been determined at 130 K. In (I) the cation has longitudinal rotational disorder. All three compounds have substructures comprising backbones formed through strong head‐to‐tail carboxyl–carboxylate hydrogen‐bond interactions [graph set C(7) in (I) and (II), and C(8) in (III)]. Two‐dimensional sheet structures are formed in all three compounds by the incorporation of the 4‐(phenyldiazenyl)anilinium cations into the substructures, including, in the cases of (I) and (II), infinite H—N—H to carboxylate O—C—O group interactions [graph set C(6)], and in the case of (III), bridging through the water molecule of solvation. The peripheral alternating aromatic ring residues of both cations and anions give only weakly π‐interactive step features which lie between the sheets.  相似文献   

8.
The two title proton‐transfer compounds, 5‐methylimidazolium 3‐carboxy‐4‐hydroxybenzenesulfonate, C4H7N2+·C7H5O6S, (I), and bis(5‐methylimidazolium) 3‐carboxylato‐4‐hydroxybenzenesulfonate, 2C4H7N2+·C7H5O6S2−, (II), are each organized into a three‐dimensional network by a combination of X—H...O (X = O, N or C) hydrogen bonds, and π–π and C—H...π interactions.  相似文献   

9.
The structures of the title compounds, [Ho(C5H7O2)3(H2O)2]·H2O and [Ho(C5H7O2)3(H2O)2]·C5H8O2·2H2O, both show an eight‐coordinate holmium(III) ion in a square antiprismatic configuration. The packing of these structures consists of an infinite two‐dimensional network of hydrogen‐bonded mol­ecules. In both structures, the same hydrogen‐bonded chain of HoIII complexes is found.  相似文献   

10.
The structure of the title compound, [Co4(C9H3O6)2(OH)2(C8H6N4)(H2O)2]·2H2O, contains three separate species, namely the μ5‐bridging C9H3O63? anion, the doubly chelating and therefore μ2‐bridging C8H6N4 ligand (bi­pyrimidine, BPM), and the dihydrated di­aqua­di­hydroxy tetranuclear cationic cluster, [Co4(OH?)2(H2O)2]6+·2H2O, which lies on a crystallographic centre of symmetry, as does the BPM ligand with, in this case, the centre of symmetry coincident with the midpoint of the C—C bond joining the six‐membered rings. Within the cation cluster, the Co atoms of one pair are five‐coordinate and those of the other six‐coordinate.  相似文献   

11.
The structures of diastereomeric pairs consisting of (S)‐ and (R)‐2‐methylpiperazine with (2S,3S)‐tartaric acid are both 1:1 salts, namely (S)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (I), and (R)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (II), which reveal the formation of well defined ammonium carboxylate salts linked via strong intermolecular hydrogen bonds. Unlike the situation in the more soluble salt (II), the alternating columns of tartrate and ammonium ions of the less soluble salt (I) are packed neatly in a grid around the a axis, which incorporates water molecules at regular intervals. The increased efficiency of packing for (I) is evident in its lower `packing coefficient', and the hydrogen‐bond contribution is stronger in the more soluble salt (II).  相似文献   

12.
A series of mononuclear metal complexes of Co(III), Ni(II) and Cu(II) with 2‐(2,4‐dichlorobenzamido)‐N′‐(3,5‐di‐tert‐butyl‐2‐hydroxybenzylidene)benzohydrazide ( LH 3 ) have been synthesized and characterized using various physico‐chemical, spectroscopic and single crystal X‐ray diffraction techniques. Structural studies of [Co( LH )( LH 2 )]·H2O ( 4 ) revealed the presence of both amido and imidol tautomeric forms of LH 3 , resulting in a distorted octahedral geometry around the Co(III) ion. [Ni( LH )(H2O)]·H2O ( 5 ) and [Cu( LH )(H2O)]·H2O ( 6 ) are isomorphous structures and crystallize in the monoclinic P21/c space group. The crystal structures of 4 , 5 and 6 are stabilized by hydrogen bonds formed by the enclathrated water molecules, C‐H···π and π···π interactions. Complexes along with the ligand ( LH 3 ) were screened for their in vivo anti‐inflammatory activity (carrageenan‐induced rat paw edema method) and in vitro antioxidant activity (DPPH free radical scavenging assay). Metal complexes have shown significant anti‐inflammatory and antioxidant potential.  相似文献   

13.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

14.
In the title compound, [Ca(C6H5O4)2(C6H6O4)2]·4H2O, which is a kojic acid–Ca2+ complex, the Ca atom is on a twofold axis and is octacoordinated by O atoms from four pyrone ligand mol­ecules. The hydroxyl and ketone O atoms of each ligand form a five‐membered chelate ring with the Ca atom. The crystal structure is stabilized by partial stacking and O—H?O hydrogen bonds.  相似文献   

15.
The crystal structures of the proton‐transfer compounds of ferron (8‐hydroxy‐7‐iodoquinoline‐5‐sulfonic acid) with 4‐chloroaniline and 4‐bromoaniline, namely 4‐chloroanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7ClN+·C9H5INO4S·H2O, and 4‐bromoanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7BrN+·C9H5INO4S·H2O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen‐bonded cations, anions and water molecules which are extended into a three‐dimensional framework structure through centrosymmetric R22(10) O—H...N hydrogen‐bonded ferron dimer interactions.  相似文献   

16.
The title compound, 2C5H7N2+·2C23H13O2·H2O, formed as a by‐product in the attempted synthesis of a nonlinear optical candidate molecule, contains two independent 4‐aminopyridinium cations and 2‐(anthracen‐9‐yl)‐3‐oxo‐3H‐inden‐1‐olate anions with one solvent water molecule. This is the first reported structure containing these anions. The two anions are not planar, having different interplanar angles between the anthracenyl and inden‐1‐olate moieties of 59.07 (5) and 83.92 (5)°. The crystal packing, which involves strong classical hydrogen bonds and one C—H...π interaction, appears to account for both the nonplanarity and this difference.  相似文献   

17.
The title structure, [Rh2(C7H5O3)4(C2H6OS)2]·[Rh2(C4H7­O2)4(C2H6OS)2]·2C2H6O, contains two discrete neutral Rh–Rh dimers cocrystallized as the ethanol disolvate. Each dimer is situated on an inversion center. The butyrate chain displays disorder in one C‐atom position. In each dimer, the di­methyl sulfoxide ligand (dmso) is bound via S, as expected. The ethanol is a hydrogen‐bond acceptor for one p‐hydroxy­benzoate hydroxyl group and acts as a hydrogen‐bond donor to the dmso O atom of a neighboring p‐hydroxy­benzoate dirhodium complex. A third hydrogen bond is formed from the other p‐hydroxy­benzoate hydroxyl group to the dmso O atom of a butyrate–dirhodium complex.  相似文献   

18.
The crystal structure of the title compound, [Pt(C6H7N)2(C20H16N4)](PF6)2·C3H6O·0.5H2O, is composed of a bivalent square‐planar platinum(II) complex, two PF6 counter‐ions and solvent mol­ecules. The di‐2‐pyridylquinoxaline ligands are known to confer an `L shape' on square‐planar platinum(II) complexes, which also display inter­calating properties. The structural characterization reported here is a contribution to a wide‐ranging study focused on structural and dynamical analyses of these substrates, which may provide better insight into their biological mechanisms and activities. The expected `L‐shaped' skeleton of the metallic complex combined with the antiparallel orientation of substituted pyridines (anti conformation) generates chiral objects, found in the solid state as a racemic mixture.  相似文献   

19.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

20.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号