首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[PtCl2(PPh3)2]与B10H102-在异丙醇中回流反应, 得到3个巢式十一顶铂十硼烷簇合物: [(PPh3)2PtB10H11-9-O-i-Pr] (1), [(PPh3)2PtB10H10-8,10-(O-i-Pr)2] (2)和[(PPh3)2PtB10H11-8-O-i-Pr] (3). 簇合物13都具有PtB10多面体骨架结构, 其中Pt原子位于敞开的PtB4面上, 且与4个B原子成键, 每个Pt原子还与2个PPh3基团中的P原子成键. 将溶剂热合成的方法引入到硼簇合物的合成中并进行同一反应, 得到2个B10H102-降解的巢式十一顶双铂九硼烷簇合物: [(PPh3)2(μ-PPh2)Pt2B9H6-3,9,11-(O-i-Pr)3] (4)和[(PPh3)2(μ-PPh2)Pt2B9H6-3,9-(O-i-Pr)2-11-Cl] (5). 簇合物45都具有Pt2B9多面体骨架结构, 2个Pt原子位于敞开的Pt2B3面上的相邻位置, 且由一个PPh2基团桥连, 每个Pt原子还与3个B原子和一个PPh3基团中的P原子成键. 通过红外光谱、元素分析、X射线单晶衍射对5个簇合物进行了结构表征.  相似文献   

2.
Each of the title compounds, 8‐methoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane hemisolvate, [Pt(CH14B10O)(C18H15P)2]·0.5CH2Cl2, (I), 8‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (II), and 9‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (III), has an 11‐vertex nido polyhedral skeleton, with the 7‐platinum centre ligating to two exo‐polyhedral PPh3 groups and an alkoxy‐substituted polyhedral borane ligand. Compounds (II) and (III) are isomers. The Pt—B distances are in the range 2.214 (7)–2.303 (7) Å for (I), 2.178 (16)–2.326 (16) Å for (II) and 2.205 (6)–2.327 (6) Å for (III).  相似文献   

3.
The title compound, 7‐[(Ph2P)Au(PPh3)]‐8‐(CH3)‐7,8‐nido‐C2B9H10]·­0.5CH2Cl2 or [Au(C15H23B9P)­(C18H15P)]·­0.5CH2Cl2, is the first reported gold derivative of the ligand [7‐­(Ph2P)‐8‐(CH3)‐7,8‐nido‐C2B9H10]?. It has a mono­nuclear structure with the gold centre in an essentially linear coordination [P—Au—P 174.041 (15)°]. The open C2B3 face contains one H atom that is strongly bonded to the central B atom and semi‐bridging to a neighbouring B atom [B—H distances 1.070 (16) and 1.45 (3) Å].  相似文献   

4.
胡春华  孙杰等 《中国化学》2002,20(6):536-538
Inrecentyearssynthesisandcharacterizationofnewmetallaboranesandmetallacarboraneshaveattractedmuchinterest .1 3Awidevarietyofclustercomplexes ,inwhichcoordinationcanbeviaB—H—Mor (and)Bn—Mbond(n =1,2 ,3,4 ,5 ,6 ) ,havebeensynthesizedandstructurallycharacterized .Thepo…  相似文献   

5.
The asymmetric unit of the title complex, [PtCl2(C14H38B10P2)]·0.5CH2Cl2 or cis‐[PtCl2{1,2‐(PiPr2)2‐1,2‐C2B10H10}]·0.5CH2Cl2, contains one disordered solvent mol­ecule and two mol­ecules of the complex, in which each PtII atom displays slightly distorted square‐planar coordination geometry. The P atoms connected to the cage C atoms are coordinated to the PtII atom. The Pt—P distances vary slightly [2.215 (3) and 2.235 (4) Å] and the Pt—Cl distances are equal [2.348 (3) and 2.353 (5) Å].  相似文献   

6.
The reaction of closo-[B10H10]2− with [PtCl2(PPh3)2] in MeOH at reflux affords the B-methoxy substituted 11-vertex nido-platinaborane compound [(PPh3)2PtB10H10-8-H0.5(OCH3)0.5-10-(OCH3)] (1) and the known species [(PPh3)2PtB10H11-8-(OCH3)] (2) and 1,6-(PPh3)2B10H8 (3). The same reaction under solvothermal condition gives the partially degraded diplatinaborane [(PPh3)2(μ-PPh2)Pt2B9H7-3,9,11-(OMe)3] (4) with a novel nido-Pt2B9H10 skeleton. The new metallaborane compounds have been characterized by spectroscopic methods and single-crystal X-ray analyses. In particular, computational/theoretical chemistry supports the ultimate structural confirmation of 4. The structures of these metallaboranes exhibit interesting intra- and/or intermolecular C-H?O hydrogen bonding interactions.  相似文献   

7.
The reaction of [RuCl2(PPh3)3] with closo‐[B10H10]2? and C5H5FeC5H4COOH (FcCO2H) in refluxing CH2Cl2 solution affords three ruthenaborane clusters: [PPh3(H2O)(FcCO2)RuB10H8Cl] (1), [(PPh3)2ClRu(PPh3)(FcCO2)RuB10H9]·0.5CH2Cl2 (2 × 0.5CH2Cl2) and [PPh3(FcCO2)2RuB10H8] (3). All of these compounds are characterized by FT‐IR, NMR spectroscopic techniques, elemental analysis and single‐crystal X‐ray analysis. They are all based on a closo‐type 1:2:4:2:2 {RuB10} stack with the metal occupying the unique six‐connected apical position and can be considered as having isocloso structures derived from the complete capping of the open face of an arachano geometry to give a completely closed deltahedral cluster. Compounds 1 and 2 both have an exo‐polyhedral ferrocenecarboxylate that is attached with one {Ru? O} and one {B? O} bond each, resulting in one exo‐cyclic five‐membered Ru? O? C? O? B ring. There is in addition one exo‐polyhedral ruthenium atom bonded to the center {RuB10} cluster via one {Ru? Ru} linkage and two {RuHµB} bridges, which forms a closed exo‐polyhedral tetrahedron configuration in compound 2. Compound 3 has two exo‐polyhedral ferrocenecarboxylates to form two five‐membered Ru? O? C? O? B rings engendering a symmetrical conformation. All of these new 11‐vertex ruthenaboranes can be considered as having isocloso structures derived from the complete capping of the open face of an arachano geometry to give a completely closed deltahedral cluster. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Three dinuclear copper(I) complexes, [Cu2(µ‐Cl)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2CH2Cl2 ( 1 ), [Cu2(µ‐Br)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2THF ( 2 ) and {Cu2(µ‐I)2[1,2‐(PPh2)2‐1,2‐C2B10H10]2} ( 3 ) have been synthesized by the reactions of CuX (X = Cl, Br and I) with the closo ligand 1,2‐(PPh2)2‐1,2‐C2B10H10. All these complexes were characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy and X‐ray structure determination. Single crystal X‐ray structure determinations show that every complex contained di‐µ‐X‐bridged structure involving a crossed parallelogram plane formed by two Cu atoms and two X atoms (X = Cl, Br, I). The geometry at the Cu atom was a distorted tetrahedron, in which two positions were occupied by two P atoms of the PPh2 groups connected to the two C atoms of carborane (Cc), and the other two resulted from two X atoms which bridged the other Cu atom at the same time. To the best of our knowledge, this is the first example of copper(I) complexes with 1,2‐diphenylphosphino‐1,2‐dicarba‐closo‐dodecaborane as ligand characterized by X‐ray diffraction. The catalytic property of the complex 3 for the amination of iodobenzene with aniline was also investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The title compound, catena‐poly[[[bis(ethylenediamine‐κ2N,N′)platinum(II)]‐ μ‐chlorido‐[bis(ethylenediamine)platinum(IV)]‐μ‐chlorido] tetrakis{4‐[(4‐hydroxyphenyl)diazenyl]benzenesulfonate} dihydrate], {[PtIIPtIVCl2(C2H8N2)4](HOC6H4N=NC6H4SO3)4·2H2O}n, has a linear chain structure composed of square‐planar [Pt(en)2]2+ (en is ethylenediamine) and elongated octahedral trans‐[PtCl2(en)2]2+ cations stacked alternately, bridged by Cl atoms, along the b axis. The Pt atoms are located on an inversion centre, while the Cl atoms are disordered over two sites and form a zigzag ...Cl—PtIV—Cl...PtII... chain, with a PtIV—Cl bond length of 2.3140 (14) Å, an interatomic PtII...Cl distance of 3.5969 (15) Å and a PtIV—Cl...PtII angle of 170.66 (6)°. The structural parameter indicating the mixed‐valence state of the Pt atom, expressed by δ = (PtIV—Cl)/(PtII...Cl), is 0.643.  相似文献   

10.
Reactions between the arachno‐6,9‐C2B8H14 ( 1 ) dicarbaborane and acyl chlorides, RCOCl ( 2 ), are subject to stereocontrol that completely changes the nature of the reaction products. While most chlorides produce the 8‐R‐nido‐7,8,9‐C3B8H11 ( 3 ) tricarbollides (by skeletal alkylcarbonation=SAC), bulky RCOCls ( 2 ; where R=1‐adamantyl, 2 a ; 1‐mesityl, 2 b ; 9‐anthranyl, 2 c ; 1‐naphthyl, 2 d ) in 1,2‐dichloroethane (DCE) in the presence of triethylamine at 40–60 °C gave a series of entirely different 1‐R‐2‐CH3closo‐1,6‐C2B8H8 ( 4 ) dicarbaboranes upon acidification with conc. H2SO4 (by exosleletal alkylmehylation=EAM). Both types of reactions seem to proceed via a common [8‐R‐nido‐7,8,9‐C3B8H10]? ( 3? ) anion which in the EAM case is unstable because of steric crowd and undergoes rearrangement via the isomeric [R‐nido‐7,8,10‐C3B8H10]? tricarbollide structures which, on protonation, undergo reductive extraction of one CH vertex to generate the 2‐CH3 substituent in structure 4 .  相似文献   

11.
Chelate exo-nido-ruthenacarboranes exo-5,6,10-[RuCl(Ph2P(CH2)4PPh2)]-5,6,10-(μ-H)3-10-H-7,8-R,R′-nido-7,8-C2B9H6 (R, R′ = H, PhCH2) were synthesized by the direct method using the reaction of Cl2Ru(PPh3)(Ph2P(CH2)4PPh2) with [7,8-R,R′-nido-7,8-C2B9H10][K] in benzene. Unsubstituted exo-nido-ruthenacarborane (R, R′ = H) was used in situ for the synthesis of the dinuclear Ru-Cu exo-closo cluster of the formula exo-closo-(Ph3P)Cu(μ-H)Ru(Ph2P(CH2)4PPh2)(η5-C2B9H11). The isomerism of the complex and the crystal structure were studied by NMR spectroscopy and X-ray diffraction. The catalytic activity of the cluster in the atom transfer radical polymerization of methyl methacrylate was investigated.  相似文献   

12.
The title compound, {[PtIIPtIVI2(C2H8N2)4](HPO4)(H2PO4)I·3H2O}n, has a chain structure composed of square‐planar [Pt(en)2]2+ and elongated octa­hedral trans‐[PtI2(en)2]2+ cations (en is ethyl­ene­diamine) stacked alternately along the c axis and bridged by the I atoms; a three‐dimensionally valence‐ordered system exists with respect to the Pt sites. The title compound also has a unique cyclic tetra­mer structure composed of two hydrogenphosphate and two dihydrogenphosphate ions connected by strong hydrogen bonds [O⋯O = 2.522 (10), 2.567 (10) and 2.569 (11) Å]. The Pt and I atoms form a zigzag ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond distances of 2.6997 (7) and 2.6921 (7) Å, inter­atomic PtII⋯I distances of 3.3239 (8) and 3.2902 (7) Å, and PtIV—I⋯PtII angles of 154.52 (3) and 163.64 (3)°. The structural parameters indicating the mixed‐valence state of platinum, expressed by δ = (PtIV—I)/(PtII—I), are 0.812 and 0.818 for the two independent I atoms.  相似文献   

13.
One of the two bridging protons of the aza‐nido‐decaboranes RNB9H10X can be removed by certain bases to give nido‐anions [RNB9H9X] [R/X = H/H ( 1 a ), Ph/H ( 1 b ), p‐MeC6H4/H ( 1 c ), Bzl/H ( 1 d ), H/N3 ( 1 ′ a )]; the stericly demanding base 1,8‐bis(dimethylamino)naphthalene (“proton sponge”, ps) is ideal. In the case of tBu anion, the deprotonation (→ C4H10) may be accompanied by a hydridation (→ C4H8), yielding the arachno‐anions [RNB9H11X] ( 2 a , b , d , 2 ′ a ); these are the main products, when stericly non‐demanding bases like H are applied. The Lewis acid BH3 is added to 1 a and 1 ′ a to give the aza‐arachno‐undecaborates HNB10H12X [X = H ( 3 a ), N3 (in position 2) ( 3 ′ a )]. Thia‐ and selenaaza‐arachno‐undecaborates, [S(RN)B9H10] ( 4 b , c ) and [Se(RN)B9H10] ( 4 ′ b , c ), are obtained from 1 b , c by the addition of sulfur or selenium, respectively. The methylation of the anions 4 c and 4 ′ c gives the thia‐ and selenaazaarachno‐undecaboranes (MeS)(RN)B9H10 ( 5 c ) and (MeSe)(RN)B9H10 ( 5 ′ c ), respectively. The action of HBF4 on the arachno‐borates [HNB10H12X] ( 3 a , 3 ′ a ) leads to a mixture of nido‐HNB9H10X and nido‐HNB10H11X by the elimination of BH3 or H2, respectively; the aza‐nido‐decaborane predominates in the case of 3 ′ a and the aza‐nido‐undecaborane in the case of 3 a . The action of HBF4 on the anion 4 c yields the hypho‐undecaborate [S(RN)B9H10F2] ( 6 c ). The structures of the products are elucidated on the basis of 1H and 11B NMR spectra, supported by 2D COSY and HMQC techniques. Two types of 11‐vertex‐arachno structures and an 11‐vertex‐hypho structure are found for the products. The crystal structures of 5 c and [Hps] 6 c · CH2Cl2 are reported.  相似文献   

14.
Solvothermal synthesis method has been successfully introduced into the diphosphine carborane system, and two new nickel complexes containing nido-carborane diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] with the formula [Ni2(μ-Cl)(μ-OOPPh2){7,8-(PPh2)2-7,8-C2B9H10}2]·CH2Cl2 (1) and [H3O][NiBr2] {7,8-(PPh2)2-7,8-C2B9H10}·C6H6 (2) were obtained by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with NiCl2·6H2O or NiBr2·6H2O in CH2Cl2 under the solvothermal condition. Both of the two complexes have been characterized by the elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and single crystal X-ray diffraction. The X-ray structure analysis for these two complexes reveals the nido-nature of the carborane diphosphine ligand, indicating that the solvothermal synthesis is an efficient method for the degradation of the closo-carborane diphosphine ligand.  相似文献   

15.
[Pt2(PPh3)2(CN-xylyl)4]2+ (CN-xylyl = 2,6-dimethylphenyl isocyanide) and [Pt3(PPh3)2(CN-xylyl)6]2+ have been synthesized by reaction of [Pt(PPh3)2(C2H4)] with either [Pt(PPh3)2Cl2] and CN-xylyl or [Pt(CN-xylyl)4]2+. The products have been characterised by 31P{1H} and 195Pt{1H} NMR spectroscopy, and a single crystal X-ray diffraction study of the trinuclear compound has demonstrated that the skeletal atoms are linear.  相似文献   

16.
Halogenation of nido-B10H14 with C2H2Cl4, C2Cl6, Br2, or I2, produces by cluster degradation the (2 n)-closo-clusters B9X9 (X = Cl, Br, I). The synthesis of salts of the perhalogenated radical anions of the type (2 n + 1)-closo-[B9X9]· – and of the corresponding dianions (2 n + 2)-closo-[B9X9]2– from neutral B9X9 is described [n is the number of cluster atoms; (2 n), (2 n + 1), and (2 n + 2) is the number of cluster electrons]. Molecular and crystal structures of B9Cl9, B9Br9, [(C6H5)4P][B9Br9] · CH2Cl2, and [(C4H9)4N]2[B9Br9] · CH2Cl2 have been determined via X-ray diffraction. All three oxidation states of the cluster retain the tricapped trigonal prism. The reduction of the clusters B9X9 was shown by cyclic voltammetry in CH2Cl2 to proceed via two successive one-electron reversible steps, separated by at least 0.4 V. The paramagnetic radical anions [B9X9]· – (X = Cl, Br) were further characterized by magnetic susceptibility measurements of [Cp2Fe][B9X9] and [Cp2Co][B9X9], respectively. The EPR spectra of [B9X9]· – (X = Cl, Br, I) in glassy frozen CH2Cl2 solutions showed increasing g anisotropy for the heavier halogen derivatives, illustrating significant halogen participation at the singly occupied MO. The 11B NMR spectra of CD2Cl2 solutions of the neutral clusters B9X9 exhibit only one sharp resonance, indicating that the boron atoms are highly fluxional in solution. In contrast, two different boron resonances as expected for a rigid tricapped trigonal prism are clearly observed for the [B9X9]2– dianions in solutions and for solid B9Br9 in the 11B MAS NMR spectra. Temperature dependent 11B MAS NMR experiments on B9Br9 and [B9Br9]2– in the solid state show a reversible coalescence of the two resonances at higher temperature. 11B MAS NMR spectra and DTA measurements of [B9Br9]2– showed a phase transition.  相似文献   

17.
The betain‐like SOC2(PPh3)2 ( 1a ) reacts with [Mn2(CO)10] in THF to produce the salt‐like complex [(CO)4Mn(SOC2{PPh3}2)2][Mn(CO)5] ( 2 ). 1a is bonded via the sulfur atoms which are arranged in trans position in the octahedral environment of the manganese atom. With InCl3 from CH2Cl2 solution the addition product [Cl3In(SOC2{PPh3}2)] ( 3 ) is obtained along with the salt (H2C{PPh3}2)[InCl4]2 ( 4 ), which is the result of proton abstraction from the solvent. The crystal structures of 2· 0.5THF and 4· CH2Cl2 are reported. The compounds are further characterized by IR and 31P NMR spectroscopy.  相似文献   

18.
Two‐electron reduction of 1,1′‐bis(o‐carborane) followed by reaction with [Ru(η‐mes)Cl2]2 affords [8‐(1′‐1′,2′‐closo‐C2B10H11)‐4‐(η‐mes)‐4,1,8‐closo‐RuC2B10H11]. Subsequent two‐electron reduction of this species and treatment with [Ru(η‐arene)Cl2]2 results in the 14‐vertex/12‐vertex species [1‐(η‐mes)‐9‐(1′‐1′,2′‐closo‐C2B10H11)‐13‐(η‐arene)‐1,13,2,9‐closo‐Ru2C2B10H11] by direct electrophilic insertion, promoted by the carborane substituent in the 13‐vertex/12‐vertex precursor. When arene=mesitylene (mes), the diruthenium species is fluxional in solution at room temperature in a process that makes the metal–ligand fragments equivalent. A unique mechanism for this fluxionality is proposed and is shown to be fully consistent with the observed fluxionality or nonfluxionality of a series of previously reported 14‐vertex dicobaltacarboranes.  相似文献   

19.
Synthesis and Crystal Structure of the Nitrido Complexes [(n‐Bu)4N]2[{(L)Cl4Re≡N}2PtCl2] (L = THF und H2O) and [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2—PtCl2] ( 1a ) is obtained by the reaction of [(n‐Bu)4N][ReNCl4] with [PtCl2(C6H5CN)2] in THF/CH2Cl2. It forms red crystals with the composition 1a · 2 CH2Cl2 crystallizing in the tetragonal space group I41/a with a = 3186.7(2); c = 1311.2(1) pm and Z = 8. If the reaction of the educts is carried out without THF, however under exposure to air the compound [(n‐Bu)4N]2[{(H2O)Cl4Re≡N}2PtCl2] ( 1b ) is obtained as red trigonal crystals with the space group R3 and a = 3628.3(3), c = 1231.4(1) pm and Z = 9. In the centrosymmetric complex anions [{(L)Cl4Re≡N}2PtCl2]2— a linear PtCl2moiety is connected in a trans arrangement with two complex fragments [(L)Cl4Re≡N] via asymmetric nitrido bridges Re≡dqN‐Pt. For PtII such results a square‐planar coordination PtCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 169.5 pm and Pt‐N = 188.8 pm ( 1a ), respectively, Re‐N = 165.6 pm and Pt‐N = 194.1 pm ( 1b ). By the reaction of [(n‐Bu)4N][ReNCl4] with PtCl4 in CH2Cl2 platinum is reduced forming the heterometallic ReVI/PtII complex, [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 2012.9(1); b = 1109.0(2); c = 2687.4(4) pm; β = 111.65(1)° and Z = 4. In the central unit ClPt(μ‐Cl)2PtCl of the anionic complex [(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]22— with the symmetry C2 the coordination of the Pt atoms is completed by two nitrido bridges Re≡N‐Pt to nitrido complex fragments [(H2O)Cl4Re≡N] forming a square‐planar arrangement for the Pt atoms. The distances in the linear nitrido bridges are Re‐N = 165.9 pm and Pt‐N = 190.1 pm.  相似文献   

20.
A tetranuclear gold cluster has been synthesized by the reaction of [Au(PPh3)NO3] with the closo carborane diphosphine 1,2-(PPh2)2-1,2-C2B10H10 in THF, and characterized by elemental analysis, FT-IR, 1H and 13C?NMR spectroscopy and X-ray structure determination. The cluster crystallizes in the triclinic Pī, a?=?15.118(8)?Å, b?=?16.057(9)?Å, c?=?24.284(13)?Å, α?=?80.822(9)°, β?=?79.624(8)°, γ?=?81.938(8)°, Z?=?2, R 1?=?0.0626, wR 2?=?0.1894. A single crystal structure determination showed that four gold atoms form a tetrahedral framework. Among these four gold atoms, two were chelated by two nido carborane diphosphine [7,8-(PPh2)2-7,8-C2B9H10]? anions coming from the degradation of the initial closo ligand 1,2-(PPh2)2-1,2-C2B10H10, while the other two were ligated to two PPh3 groups. The luminescence of this cluster was also investigated in dichloromethane solution at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号