共查询到20条相似文献,搜索用时 0 毫秒
1.
Samaneh Mahmoudi‐GomYek Davood Azarifar Masoumeh Ghaemi Hassan Keypour Masoumeh Mahmoudabadi 《应用有机金属化学》2019,33(6)
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions. 相似文献
2.
The mononuclear complex, [NiCl2 (trzCH2CH2COPh)4]·6H2O (trz =1,2,4‐triazole), was synthesized and its structure was determined by single crystal X‐ray determination. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters: a = 0.80391(2) nm, b = 1.08215(2) tun, c = 2.90133(2) nm, β = 94.792 (1)° and Z = 2. Each nickel atom is coordinated by four N atoms of triazole from four β‐(1,2,4‐triazole‐1‐yl)propiophenone ligands and two chloride anions in trans arrangement with octahedral coordination geometry. In addition to the coordinating nickel complex, there are six uncoordinated water molecules. The Ni‐Cl distance is 0.24865(8) nm and the Ni‐N distances are in the range of 0.2072(2) to 0.2099(2) nm, respectively. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds. The intermolecular hydrogen bonds connect the [NiCl2(C2H2N3CH2CH2COPh)4] and H2O moieties. The deep green crystals were also examined by elemental analysis, FT‐IR and UV spectra, which are in agreement with the structural data. 相似文献
3.
A novel and efficient nanocatalyst consisting of benzimidazole‐salen Cu(II) complex on surface‐modified silica (BS‐Cu(II)@SiO2) was prepared. The heterogeneous nanocatalyst was characterized by FESEM, TEM, EDX, FT‐IR, XRD, ICP, and TGA. The nanocatalyst was used for the one‐pot synthesis of some target hybrid molecules. An efficient four component C–H bond activation/[3 + 2] cycloaddition and condensation/cyclization/aromatization sequence toward triazole‐benzimidazole derivatives is disclosed. This methodology provides a general and rapid synthetic route to some new triazole‐benzimidazole hybrids under mild reaction conditions. In addition, the heterogeneous nanocatalyst can be easily separated from the reaction mixture and used several times without noticeable leaching or loss of its catalytic activity. We believe this interesting one‐pot reaction as well as benzimidazole‐salen Cu(II) complex pave the way to the design and synthesis of other new hybrid molecules and metal catalysts, respectively. 相似文献
4.
Hongjuan Jiang Lifen Zhang Jian Qin Wei Zhang Zhenping Cheng Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4103-4109
Well‐defined bimodal molecular weight distribution (MWD) polystyrene and polystyrene‐b‐poly(acrylonitrile) were successfully synthesized using a pair of mono/difunctional trithiocarbonate RAFT agents 1 and 2 via one‐pot RAFT polymerization. The kinetics of RAFT polymerization for styrene in bulk with a molar ratio of [St]0:[AIBN]0:[ 1 ]0:[ 2 ]0 = 1200:1:2.5:2.5 was studied at 75°C. The results indicated that the system showed excellent controllability and “living” characteristics to both higher and lower molecular weight fractions, providing an efficient and facile way to producing bimodal MWD (co)polymers with both controlled molecular weight (MW) and MWD in molecular level, and the plausible mechanism was discussed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
5.
Chi Nguyen Thi Thanh Thong Pham Van Hai Le Thi Hong Luc Van Meervelt 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(10):758-764
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring. 相似文献
6.
合成并结构表征了一种新型的线性三核锌(II)配合物,{[ZnL(OAc)]2Zn}∙CH3COCH3(H2L:乙二氧双(5-溴-2-羟基苯亚甲基胺))。X-射线结构表明配合物中三个锌(II)离子配位到了两个四齿的L2-单元和两个桥联的的乙酸根基团。围绕两端的Zn(1) 或 Zn(1)#1原子形成了扭曲的四方锥配位几何体,围绕中心Zn(2) 原子构成了一个稍微扭曲的八面体配位结构。同时,观察到锌(II)配合物能发出蓝绿色荧光,其最大发射波长为464 nm。 相似文献
7.
One‐pot regioselective benzylation of pyrroles and indoles using zirconium tetrachloride is discussed. This has been achieved by in‐situ generation of di(1H‐pyrrol‐1‐yl)zirconium(IV) chloride and di(1H‐indol‐1‐yl)zirconium(IV) chloride. It was observed that benzylation reactions of these complexes using n‐BuLi occurred at C‐2 position for pyrrole and C‐3 for indole. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
Synthesis and characterization of copper(II) Schiff base complex supported on Fe3O4 magnetic nanoparticles: a recyclable catalyst for the one‐pot synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones 下载免费PDF全文
Fe3O4–Schiff base of Cu(II) is found to be a recyclable and heterogeneous catalyst for the rapid and efficient synthesis of various 2,3‐dihydroquinazolin‐4(1H)‐one derivatives from the two‐component condensation of 2‐aminobenzamide and an aldehyde. This reaction is simple, green and cost‐effective. Separation and recycling can also be easily done by magnetic decantation of the Fe3O4 nanoparticles with an external magnet. The prepared catalyst was characterized using thermogravimetry, Fourier transform infrared spectroscopy, vibrating sample magnetometry, inductively coupled plasma analysis, X‐ray diffraction and scanning electron microscopy. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
《Journal of Coordination Chemistry》2012,65(5):499-504
A new metal-organic coordination polymer [Zn2(C2O4)2(C3N2H4)2] n (1) has been hydrothermally synthesized with ZnCl2·2H2O, oxalic acid and imidazole. The compound has a 2D network, consisting of infinite zinc(II) oxalate chains connected to each other by three-coordinate oxygen atoms. Within the chains, the zinc atoms are each octahedrally coordinated by one nitrogen atom from imidazole and five oxygen atoms from oxalate groups. Furthermore, there are two coordination modes of oxalate to zinc ions: chelate bis-bidentate and chelate/bridging bis-bidentate in compound 1, and the latter is rare among related compounds. Crystal data: monoclinic, P2(1)/c, a?=?8.4310(17), b?=?9.4060(19), c?=?8.2790(17)?Å, β?=?93.15(3)°, V?=?655.5(2)?Å3, Z?=?2, R 1?=?0.0322, wR 2?=?0.0850. 相似文献
10.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed. 相似文献
11.
Hydrothermal Synthesis and Electrochemical Properties of Complex Cu(CH3C6H4COOH)2(2,2''-bipy)·(H2O) 总被引:1,自引:0,他引:1
The title complex has been synthesized by 4-methylbenzoic acid and 2,2'-bipyridine (bipy) in the mixed solvent of water and methanol. It crystallizes in the triclinic system, space group (P1-) with a = 0.7047(3), b = 1.1217(5), c = 1.6718(7) nm, α = 103.826(7), β = 90.772(6), γ = 104.195(6)°, C26H25CuN2O5.50, Mr = 517.02, V = 1.2404(9) nm3, Dc = 1.384 g/cm3, Z = 2, F(000) = 536, μ(MoKα= 0.921 mm-1, R = 0.0782 and wR = 0.2172. Structural analysis shows that the copper atom is coordinated with three oxygen atoms from two 4-methylbenzoic acids and one water molecule together with two nitrogen atoms from 2,2'-bipyridine, giving a distorted square-pyramid coordination geometry. The cyclic voltametric behavior of the complex has also been described. 相似文献
12.
The cadmium atom is coordinated in distorted pentagonal bipyramidal geometry by the pyridine‐nitrogen atom of the 4‐[N,N‐bis(2‐cyanoethyl)amino]pyridine ligand, two oxygen atoms of two methanol molecules and four oxygen atoms of two acetate groups. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
The structure of trans-[Pd(dtco-3-OH)2] (ClO4)2·2DMSO, in which dtco-3-OH is dithiacyclooctan-3-ol and DMSO is dimethyl sulfoxide, was determined by X-ray crystallographic analysis. The crystal data: space group pi, a = 0.7077(2) nm, b = 1.0788(1) nm, c = 1.1111(1) nm, α=67.710(8)°, β = 73. 59(2)°, γ = 85. 39(2)°,R1 = 0 . 0368 and Rw = 0.0998. The palladium (II) is coordinated by four sulfur atoms with a regular square planar configuration. The Pd-S distances are 0.2314(1) and 0.2317(1) nm, respectively. Both dtco-3-OH ligands are in the boat-chair configuration and two hydroxyl groups are on the opposite sites of the PdS4 coordination plane and are towards Pd(II). The Pd-O distance is 0. 285 nm, indicating a weak interaction between them. A typical hydrogen bond between the hydroxyl group of dtco-3-OH ligand and DMSO was observed in the crystal structure. An aqueous solution prepared with the crystals of the complex was used for the investigation of electrospray mass spectrometry ( ESMS ). Besid 相似文献
14.
Enamul Karim Kaushal Kishore Jai N. Vishwakarma 《Journal of heterocyclic chemistry》2003,40(5):901-903
A facile one‐pot synthesis of 5‐benzoyl‐6‐methylthio‐1,2,3,4‐tetrahydropyrimidines in good yields is reported. 相似文献
15.
Yang Wu Wen‐Zhen Wang Rayyat Huseyn Ismayilov Gene‐Hsiang Lee Shie‐Ming Peng 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(3):285-288
The title compound, catena‐poly[[[diaqua(methanol‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] [[aqua(aqua/methanol‐κO)(perchlorato‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] tris(perchlorate) methanol monosolvate 1.419‐hydrate], {[Cu(C9H9N5)(CH3OH)(H2O)2][Cu(C9H9N5)(ClO4)(CH3OH)0.581(H2O)1.419](ClO4)3·CH3OH·1.419H2O}n, is a one‐dimensional straight‐chain polymer of N‐(4‐methylpyrimidin‐2‐yl)pyrazin‐2‐amine (L) with Cu(ClO4)2. The complex consists of two crystallographically independent one‐dimensional chains in which the CuII atoms exhibit two different octahedral coordination geometries. The L ligand coordinates to two CuII centres in a tridentate manner, with the pyrazine ring acting as a bridge linking the CuII coordination units and building an infinite one‐dimensional chain. Extensive hydrogen bonding among perchlorate anions, water molecules and L ligands results in three‐dimensional networks. 相似文献
16.
配合物Ni(DPBP-SAH)2·2CH3CH2OH的合成和晶体结构 总被引:2,自引:0,他引:2
A nickel(Ⅱ) complex Ni(DPBP-SAH)2·2CH3CH2OH, (DPBP-SAH=N-(1,3-diphenyl-4-benzylidene-5-pyrazolone)-salicylidene hydrazone), has been synthesized and characterized by elemental analyses, IR spectra and single crystal X-ray diffraction. It belongs to monoclinic, space group C2/c with a=2.737 9(4) nm, b=1.249 2(2) nm, c=1.760 8(2) nm, β=120.212(9)°, Mr=1 065.84, V=5.204(1) nm3, Z=4. The X-ray diffraction reveals that the nickel(Ⅱ) ion in the title complex is in a slightly distorted octahedral arrangement of the ON donor atoms of two DPBP-SAH and two O-donor atoms in ethanol. CCDC: 249394. 相似文献
17.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(11):975-978
Platinum antitumour agents, containing aromatic rings, which are used for targeting DNA in effective therapies for the treatment of cancer. We have synthesized the title metallocomplex with an aromatic ligand and determined its crystal structure. In many cases, complexes of platinum and other metals have a symmetrical structure. In contrast, the platinum(II) complex with pyridine and N‐(9‐anthracenylmethyl)‐1,2‐ethanediamine as ligands (systematic name: cis‐{N‐[(anthracen‐9‐yl)methyl]ethane‐1,2‐diamine‐κ2N ,N ′}bis(pyridine‐κN )platinum(II) dinitrate), [Pt(C5H5N)2(C17H18N2)](NO3)2, is asymmetric. Of the two pyridine ligands, only one is π‐stacked with anthracene, resulting in an asymmetric structure. Moreover, the angle of orientation of each pyridine ligand is variable. Further examination of the packing motif confirms an intermolecular edge‐to‐face interaction. 相似文献
18.
19.
Two new transition metal dicyanamide complexes [Co2(tppz)(dca)4]·CH3CN ( 1 ) [tppz=tetra(2‐pyridyl)pyrazine, dca=dicyanamide] and [Co(tptz)(dca)(H2O)](dca) ( 2 ) [tptz=2,4,6‐tri(2‐pyridyl)‐1,3,5‐triazine] were synthesized and characterized by single crystal X‐ray diffraction analysis. In 1 each cobalt(II) atom is coordinated to three dca anions and one tppz molecule to form a distorted octahedral geometry, the neigbour two cobalt(II) atoms are bridged by one tppz ligand to form a dimer, then the cobalt(II) atoms in each dimer are joined together to form a ladder chain structure. In 2 the coordination geometry around the central metal is also distorted octahedral, each cobalt(II) atom is coordinated by two dca anions, one tptz molecule and one water ligand to form a cationic part, and the cationic part is linked with the free dca anions via the electrostatic attraction to give an infinite chain structure. Magnetic susceptibility measurement in the range of 2–300 K indicates that there are antiferromagnetic couplings between adjacent metal ions in 1 (T>29 K, (=?9.78 K, C=4.92 cm3·K·mol?1) and ferromagnetic couplings in 2 (T>150 K, (=7.97 K, C=2.59 cm3·K·mol?1) respectively. 相似文献
20.
Feng‐Bo Xu Li‐Juan Sun Zhen‐Ai Xuan Wei‐Dong Zhang Hui Cheng Zheng‐Zhi Zhang 《中国化学》2000,18(5):722-728
Reaction of a new type of bidentate ligand PhPQu [PhPQu = 2‐diphenylphosphino‐4‐methylquinoline] with Fe(CO)5 in butanol gave trans‐Fe(FpPQu‐P)(CO)3 (1). Compound 1, which can act as a neutral tridentate organometallic ligand, was reacted with I B, II B metal compounds and a rhodium complex to give six binuclear complexes with Fe? M bonds, Fe(CO)3 (μ‐Ph2PQu)MXn (2–7) [M= Zn(II), Cd(II), Hg(II), Cu(I), Ag(I), Rh(I)], and an ion‐pair complex [Fe(CO)3 (μ‐Ph2PQu)2HgI][HgI3]? (8). The structure of 8 was determined by X‐ray crystallography. Complex 8 crystallizes in the space group P‐1 with a = 1.0758(3), b = 1.6210(4), c=1.7155(4)nm; a=75.60(2), β=71.81(2), γ=81.78(2)° and Z = 2 and its structure was refined to give agreement factors of R=0.050 and Rw = 0.057. The Fe‐Hg bond distance is 0.2536nm. 相似文献