首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
By studying the energy of neutron star matter, we discuss the nuclear symmetry energy at different baryon densities and different coupling constants in the relativistic mean field approximation. The results show that the symmetry energy increases with baryon density at various coupling constants and incompressibilities. Further-more, the symmetry energy at saturation density increases with increasing incompressibility at fixed d, and decreases at fixed c. Specifically, when coupling constants gv and gs are fixed, respectively, the symmetry energy has a little change with increasing incompressibility. It is demonstrated that the NN coupling constants have greater influences on the symmetry energy than the self-coupling constants.  相似文献   

2.
刘晓进  吴琛  任中洲 《中国物理 C》2010,34(11):1709-1713
In this paper,we include the density dependence behavior of the symmetry energy in the improved quark mass density dependent (IQMDD) model.Under the mean field approximation,this model is applied to investigate neutron star matter and neutron stars successfully.Effects of the density dependence of the symmetry energy on neutron stars are described.  相似文献   

3.
采用相对论平均场方法研究了致密物质的性质, 构造了包括较宽温度、 同位旋不对称度和密度范围的适用于超新星模拟研究的状态方程, 均匀物质由相对论平均场理论描述, 非均匀物质由托马斯 费米近似给出。讨论了包含超子自由度的中子星物质的状态方程。 计算结果表明, 包含超子可以有效地软化高密度区的状态方程, Λ超子的超流态有可能存在于大质量中子星内部。The properties of dense matter are studied within the relativistic mean field theory. The equation of state (EOS) of dense matter are constructed covering a wide range of temperature, proton fraction, and density for the use of supernova simulations. The relativistic mean field theory is employed to describe the uniform matter, while the Thomas Fermi approximation is adopted to describe the non uniform matter. The EOS of neutron star matter is discussed with the inclusion of hyperons. It is found that the EOS at high density can be significantly softened by the inclusion of hyperons. The 1S0 superfluidity of Λ hyperons may exist in massive neutron stars.  相似文献   

4.
Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.  相似文献   

5.
The mass-dependent symmetry energy coefficients asym(A) has been extracted by analysing the heavy nuclear mass differences reducing the uncertainties as far as possible in our previous work.Taking advantage of the obtained symmetry energy coefficient asym(A) and the density profiles obtained by switching off the Coulomb interaction in208 Pb,we calculated the slope parameter L0.11 of the symmetry energy at the density of 0.11 fm-3.The calculated L0.11 ranges from 40.5 Me V to 60.3 Me V.The slope parameter L0.11 of the symmetry energy at the density of 0.11 fm-3is also calculated directly with Skyrme interactions for nuclear matter and is found to have a fine linear relation with the neutron skin thickness of208 Pb,which is the difference of the neutron and proton rms radii of the nucleus.With the linear relation the neutron skin thickness Rn pof208 Pb is predicted to be 0.15–0.21 fm.  相似文献   

6.
The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the con- strained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed. Based on the range of the symmetry energy slope, a constraint on the frequency and damping time of the wi-mode of the neutron star is given. It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L, and the softer symmetry energy corresponds to a higher frequency. Moreover, it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.  相似文献   

7.
We propose an alternative way to constrain the density dependence of the symmetry energy from the neutron skin thickness of nuclei which shows a linear relation to both the isospin asymmetry and the nuclear charge with a form of Z2/3. The relation of the neutron skin thickness to the nuclear charge and isospin asymmetry is systematically studied with the data from antiprotonic atom measurement, and with the extended Thomas-Fermi approach incorporating the Skyrme energy density functional. An obviously linear relationship between the slope parameter L of the nuclear symmetry energy and the isospin asymmetry dependent parameter of the neutron skin thickness can be found, by adopting 70 Skyrme interactions in the calculations. Combining the available experimental data, the constraint of -20 MeV L 82 MeV on the slope parameter of the symmetry energy is obtained. The Skyrme interactions satisfying the constraint are selected.  相似文献   

8.
对称能表征了同位旋非对称强相互作用物质状态方程的同位旋相关部分,它对于理解核物理和天体物理中的许多问题有重要意义。简要总结了关于核物质和夸克物质对称能研究的最新进展。对于核物质对称能,通过对核结构,核反应以及中子星的研究,目前对其亚饱和密度的行为已有比较清楚的认识,同时,对饱和密度附近对称能的约束也取得了很好的研究进展。但如何确定核物质对称能的高密行为仍然是一个挑战。另一方面,在极端高重子数密度条件下,强相互作用物质将以退禁闭的夸克物质状态存在。同位旋非对称夸克物质可能存在于致密星内部,也可能产生于极端相对论重离子碰撞中。对最近关于夸克物质对称能对夸克星性质的影响以及重夸克星的存在对夸克物质对称能的约束的研究工作进行了介绍,结果表明同位旋非对称夸克物质中上夸克和下夸克可能感受到很不一样的相互作用,这对于研究极端相对论重离子碰撞中部分子动力学的同位旋效应有重要启发。The symmetry energy characterizes the isospin dependent part of the equation of state of isospin asymmetric strong interaction matter and it plays a critical role in many issues of nuclear physics and astrophysics. In this talk, we briefly review the current status on the determination of the symmetry energy in nucleon (nuclear) and quark matter. For nuclear matter, while the subsaturation density behaviors of the symmetry energy are relatively well-determined and significant progress has been made on the symmetry energy around saturation density, the determination of the suprasaturation density behaviors of the symmetry energy remains a big challenge. For quark matter, which is expected to appear in dense matter at high baryon densities, we briefly review the recent work about the effects of quark matter symmetry energy on the properties of quark stars and the constraint of possible existence of heavy quark stars on quark matter symmetry energy. The results indicate that the u and d quarks could feel very different interactions in isospin asymmetric quark matter, which may have important implications on the isospin effects of partonic dynamics in relativistic heavy-ion collisions.  相似文献   

9.
同位旋物理的主要任务之一是通过放射性核束引起的核反应来探索介质中有效核子-核子相互作用的同位旋依赖性,尤其是同位旋相关的核物质状态方程, 即密度依赖的核物质对称能。由于对称能,尤其是其高密行为,对核物理学和天体物理学具有重要意义,密度依赖的对称能在过去10年一直是中能重离子物理研究领域的主要焦点之一。近年来,低密对称能的研究已经取得了重要进展, 而对称能的高密行为仍然很不确定。在理论方面,人们提出了许多对高密对称能敏感的观测量。 实验方面, 关于对称能高密行为研究的实验计划已经展开,世界各地正在建造的放射性核束装置为对称能的高密行为研究提供了新的机遇。基于IBUU输运模型综述了研究对称能高密行为的一些敏感观测量及其最新进展, 以及所面临的挑战与机遇。One of the major tasks of studying isospin physics via heavy ion collisions with neutron rich nuclei, is to explore the isospin dependence of in medium nuclear effective interactions and the equation of state of neutron rich nuclear matter, i.e., the density dependence of nuclear symmetry energy. Because of its great importance for understanding many phenomena in both nuclear physics and astrophysics, the study of the density dependence of nuclear symmetry energy has been the main focus of the intermediate energy heavy ion physics community during the last decade. Nowadays significant progress has been achieved in studying the low density behavior of nuclear symmetry energy, but the high density behavior of nuclear symmetry energy is still very uncertain. Theoretically, a number of observables have been proposed as sensitive probes to the high density behavior of nuclear symmetry energy. With new opportunities provided by the various radioactive beam facilities being constructed around the world, studies of the high density behavior of nuclear symmetry energy is expected to be one of the main forefront research areas in nuclear physics in the near future. In this report, based on the transport model IBUU we have reviewed the major progress achieved in studying the high density behavior of nuclear symmetry energy and discussed future challenges in this field.  相似文献   

10.
Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations,the resulting volume energy a1 and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV,and the density symmetry L is around 100 Me V. On the other hand, models that consider only linear terms lead to incompressibility K0 much higher than expected. For most parameter sets there exists a critical point (ρc,δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r (≌) 0.9 fm.  相似文献   

11.
In this paper,we include the density dependence behavior of the symmetry energy in the improved quark mass density dependent (IQMDD) model.Under the mean field approximation,this model is applied to investigate neutron star matter and neutron stars successfully.Effects of the density dependence of the symmetry energy on neutron stars are described.  相似文献   

12.
We discuss how the nuclear superfluidity affects the thermalisation time of the inner crust of neutron star in the case of a rapid cooling process. The thermal response of the inner crust matter is calculated supposing two pairing scenarios: one corresponding to the BCS approximation and the other to many-body techniques including polarisation effects. It is shown that these two pairing scenarios, which reflect the present uncertainty in the pairing properties of infinite neutron matter, give very different values for the thermalisation time of the crust.  相似文献   

13.
B K AGRAWAL  J N DE  S K SAMADDAR 《Pramana》2014,82(5):823-830
The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy coefficients extracted from the precise data on the nuclear masses.  相似文献   

14.
We review the calculation of the equation of state of pure neutron matter using quantum Monte Carlo (QMC) methods. QMC algorithms permit the study of many-body nuclear systems using realistic two- and three-body forces in a non-perturbative framework. We present the results for the equation of state of neutron matter, and focus on the role of three-neutron forces at supranuclear density. We discuss the correlation between the symmetry energy, the neutron star radius and the symmetry energy. We also combine QMC and theoretical models of the three-nucleon interactions, and recent neutron star observations to constrain the value of the symmetry energy and its density dependence.  相似文献   

15.
Heavy-ion experiments provide important data to test astrophysical models. The high-density equation of state can be probed in HI collisions and applied to the hot protoneutron star formed in core collapse supernovae. The parity radius experiment (PREX) aims to accurately measure the neutron radius of 208Pb with parity-violating electron scattering. This determines the pressure of neutron-rich matter and the density dependence of the symmetry energy. Competition between nuclear attraction and Coulomb repulsion can form exotic shapes called nuclear pasta in neutron star crusts and supernovae. This competition can be probed with multifragmentation HI reactions. We use large-scale semiclassical simulations to study nonuniform neutron-rich matter in supernovae. We find that the Coulomb interactions in astrophysical systems suppress density fluctuations. As a result, there is no first-order liquid-vapor phase transition. Finally, the virial expansion for low-density matter shows that the nuclear vapor phase is complex with significant concentrations of alpha particles and other light nuclei in addition to free nucleons.  相似文献   

16.
Within a relativistic mean-field model with nonlinear isoscalar–isovector coupling, we explore the possibility of constraining the density dependence of nuclear symmetry energy from a systematic study of the neutron skin thickness of finite nuclei and neutron star properties. We find the present skin data supports a rather stiff symmetry energy at subsaturation densities that corresponds to a soft symmetry energy at supranormal densities. Correlation between the skin of 208Pb and the neutron star masses and radii with kaon condensation has been studied. We find that 208Pb skin estimate suggest star radii that reveals considerable model dependence. Thus precise measurements of neutron star radii in conjunction with skin thickness of heavy nuclei could provide significant constraint on the density dependence of symmetry energy.  相似文献   

17.
《Nuclear Physics A》1998,637(3):435-450
We construct the equation of state (EOS) of nuclear matter using the relativistic mean field (RMF) theory in the wide density, temperature range with various proton fractions for the use of supernova simulation and the neutron star calculations. We first construct the EOS of homogeneous nuclear matter. We use then the Thomas-Fermi approximation to describe inhomogeneous matter, where heavy nuclei are formed together with free nucleon gas. We discuss the results on free energy, pressure and entropy in the wide range of astrophysical interest. As an example, we apply the resulting EOS on the neutron star properties by using the Oppenheimer-Volkoff equation.  相似文献   

18.
19.
In this work we study the effect of the symmetry energy on several properties of neutron stars. First, we discuss its effect on the density, proton fraction and pressure of the neutron star crust-core transition. We show that whereas the first two quantities present a clear correlation with the slope parameter L of the symmetry energy, no satisfactory correlation is seen between the transition pressure and L . However, a linear combination of the slope and curvature parameters at ρ = 0.1 fm?3 is well correlated with the transition pressure. In the second part we analyze the effect of the symmetry energy on the pasta phase. It is shown that the size of the pasta clusters, number of nucleons and the cluster proton fraction depend on the density dependence of the symmetry energy: a small L gives rise to larger clusters. The influence of the equation of state at subsaturation densities on the extension of the inner crust of the neutron star is also discussed. Finally, the effect of the density dependence of the symmetry energy on the strangeness content of neutron stars is studied in the last part of the work. It is found that charged (neutral) hyperons appear at smaller (larger) densities for smaller values of the slope parameter L. A linear correlation between the radius and the strangeness content of a star with a fixed mass is also found.  相似文献   

20.
We consider three models, based on the mean field and sigma models, all of which fit the saturation properties and the symmetry energy of nuclear matter. None of the models yields an abnormal state of neutron star matter at supemuclear density even when pion condensation is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号