首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, dual‐column capillary microextraction (CME) system consisting of N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AAPTS)‐silica coated capillary (C1) and 3‐mercaptopropyl trimethoxysilane (MPTS)‐silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual‐column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 µl of 0.01 mol l?1 HNO3 [for As(V)], 0.1 mol l?1 HNO3 [for MMA(V)] and 0.2 mol l?1 HNO3‐3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir‐coated graphite tubes for further ETV‐ICP‐MS detection. With two‐step ETV pyrolysis program, Cl? in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference‐free, determined by ETV‐ICP‐MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 σ) of the method were 3.9 pg ml?1 for As(III), 2.7 pg ml?1 for As(V), 2.6 pg ml?1 for MMA(V) and 124 pg ml?1 for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml?1, n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of seasonal temperature change on the release of methylated arsenic from macroalgae, phytoplankton and sediment porewaters has been investigated by a series of controlled laboratory experiments. The appearance of dissolved arsenic species in the overlying waters was monitored using a coupled hydride generation/GC AA analytical technique. The liberation of dissolved arsenic species by the macroalgae Ascophyllum nodosum was examined under estuarine conditions at 5 °C and 15 °C. At the lower temperature the release rates were 0.2 μg kg?1 h?1 (wet weight of material) for monomethylarsenic (MMA) and 0.5 μg kg?1 h?1 for dimethylarsenic (DMA), whereas at 15 °C the rates were 0.4 μg kg?1 h?1 and 3.2 μg kg?1h?1, respectively. Incubation experiments were also carried out at 15 °C using the diatom Skeletonema costatum. During the log growth phase, when chlorophyll a concentrations were in the range 1-5 μg dm?3, the rate of appearance of DMA in the water was ~3 ng dm?3 h?1. Sediment samples from the freshwater and seawater end-members of the Tamar Estuary, UK, were incubated under natural conditions at 5 °C and 15 °C. The freshwater sediments released DMA in preference to MMA; the concentrations of both species increased exponentially and reached a steady state in the overlying water after 250 h. Considerably more DMA was produced at 15 °C than at 5 °C, whilst the amount of MMA produced appeared to be insensitive to the temperature increase. In contrast, the seawater sediments always produced more MMA than DMA and the increase in temperature had little effect on the production of either MMA or DMA. The results of the laboratory experiments were compared with field observations in temperate estuaries, including the Tamar Estuary. The implications of changes of water temperature on the fate of arsenic in estuaries is discussed and modifications to the estuarine arsenic cycle are proposed.  相似文献   

3.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

4.
Non-chromatographic speciation of toxic arsenic in fish   总被引:1,自引:0,他引:1  
A rapid, sensitive and economic method has been developed for the direct determination of toxic species of arsenic present in fish and mussel samples. As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were determined by hydride generation-atomic fluorescence spectrometry using a series of proportional equations without the need of a chromatographic previous separation. The method is based on the extraction of arsenic species from fish through sonication with HNO3 3 mol l−1 and 0.1% (m/v) Triton and washing of the solid phase with 0.1% (m/v) EDTA, followed by direct measurement of the corresponding hydrides in four different experimental conditions. The limit of detection of the method was 0.62 ng g−1 for As(III), 2.1 ng g−1 for As(V), 1.8 ng g−1 for MMA and 5.4 ng g−1 for DMA, in all cases expressed in terms of sample dry weight. The mean relative standard deviation values (R.S.D.) in actual sample analysis were: 6.8% for As(III), 10.3% for As(V), 8.5% for MMA and 7.4% for DMA at concentration levels from 0.08 mg kg−1 As(III) to 1.3 mg kg−1 DMA. Recovery studies provided percentages greater than 93% for all species in spiked samples. The analysis of SRM DORM-2 and CRM 627 certified materials evidenced that the method is suitable for the accurate determination of arsenic species in fish.  相似文献   

5.
Some water and soil extracts polluted with arsenic, and a sewage sludge certified for total arsenic have been analysed by high‐performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC–ICP–MS) and hydride generation–gas chromatography– quartz furnace atomic absorption spectrometry (HG–GC–QFAAS techniques.) Detection limits in the range of 200–400 and 2–10 ng l−1 respectively allowed the determination of inorganic [As(III), As(V)] and methylated (DMA, MMA, TMAO) arsenic species present in these samples. Results obtained by both methods are well correlated overall, whatever the arsenic chemical form and concentration range (8–10 000 μg l−1). Comparison of these results enabled us to point out features and disadvantages of each analytical method and to reach a conclusion that they are suitable for arsenic speciation in these environmental matrices. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Changjin Wei 《Talanta》2007,73(3):540-545
A novel procedure was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic (MMA) and dimethylarsinic acid (DMA) with ion chromatography-hydride generation-atomic fluorescence spectrometry (IC-HG-AFS) by employing a new gas-liquid separator (GLS). The effective separation of the four arsenic species was achieved in about 12 min. With a sample loading volume of 20 μl, the measurable minimum for As(III), DMA, MMA and As(V) were 0.02, 0.045, 0.043 and 0.166 ng, respectively, along with relative standard deviations of 1.1, 1.1, 1.7 and 2.2% at the 100 μg l−1 level (n = 6) for As(III), DMA, MMA and As(V), respectively. The present procedure was applied for the speciation of arsenic in underground water and in urine samples, and the sum of the four arsenic species by IC-HG-AFS was in good agreement with the total value by HG-AFS.  相似文献   

7.
We calculated the intake of each chemical species of dietary arsenic by typical Japanese, and determined urinary and blood levels of each chemical species of arsenic. The mean total arsenic intake by 35 volunteers was 195±235 (15.8-1039) μg As day?1, composed of 76% trimethylated arsenic (TMA), 17.3% inorganic arsenic (Asi), 5.8% dimethylated arsenic (DMA), and 0.8% monomethylated arsenic (MA): the intake of TMA was the largest of all the measured species. Intake of Asi characteristically and invariably occurred in each meal. Of the intake of Asi, 45-75% was methylated in vivo to form MA and DMA, and excreted in these forms into urine. The mean measured urinary total arsenic level in 56 healthy volunteers was 129±92.0 μg As dm?3, composed of 64.6% TMA, 26.7% DMA, 6.7% Asi and 2.2% MA. The mean blood total arsenic level in the 56 volunteers was 0.73±0.57 μg dl?1, composed of 73% TMA, 14% DMA and 9.6% Asi. The urinary TMA levels proved to be significantly correlated with the whole-blood TMA levels (r = 0.376; P<0.01).  相似文献   

8.
N. Campillo 《Talanta》2008,77(2):793-799
A gas chromatography method with atomic emission detection (GC-AED) for the determination of dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and inorganic arsenic was optimized. The analytes were derivatized in the sample solutions with methyl thioglycolate (TGM) and the products were extracted into cyclohexane before an aliquot of this organic phase was directly injected into the chromatograph. The procedure was applied to the analysis of seawaters, wines, beers and infant foods, the last requiring an additional enzymatic reaction prior to analyte derivatization. Detection limits in seawaters and beverages were 0.05, 0.15 and 0.8 ng mL−1 for DMA, MMA and inorganic arsenic, respectively. In infant foods the detection limits were 1, 10 and 25 ng g−1 for DMA, MMA and inorganic arsenic, respectively. Inorganic arsenic was detected in some of the seawater samples and three of the wines analyzed at concentration levels in the range 1-40 ng mL−1, and DMA in several of the infant foods in the range 20-80 ng g−1. The method was validated by analyzing a certified reference material and by recovery studies. All the samples were also analyzed by hydride generation and atomic fluorescence spectrometry (HG-AFS), which provided data for the total arsenic content.  相似文献   

9.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

10.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
There are no reports in scientific literature on arsenic species in human saliva after seaweed exposure. The present article reports for the first time the regular excretion patterns of arsenic in the saliva of volunteers with one-time ingestion of Chinese seaweed. Total arsenic and speciation analyses were carried out by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC-ICP-MS). Results show that the excretion time of total arsenic in saliva is a trifle earlier than that in urine, total arsenic in human saliva also shows a regular excretion pattern like that in urine within 72 h after exposure to seaweed. For speciation analysis, four species, including the major dimethylarsinic acid (DMA) species, were detected in urine prior to seaweed intake. Six species were detected in urine after seaweed ingestion, including DMA, methylarsonic acid (MMA), oxo-dimethylarsinoylethanol (oxo-DMAE), thio-dimethlyarsenoacetate (thio-DMAA), arsenite (AsIII) and arsenate (AsV). In saliva samples, three species were found before seaweed ingestion, with the major peak identified as AsIII. After consumption, the kinds of arsenic metabolites in saliva were less than those in urine. The major species was inorganic arsenic (iAs AsIII+AsV), followed by DMA, MMA and a trace amount of oxo-DMAE. Taken together, the present study suggests that saliva assay can be used as a potential tool for understanding the regular excretion pattern of total arsenic after seaweed ingestion. Whether or not it’s an efficient tool for assessing arsenic metabolites in humans exposed to seaweed requires further investigation.  相似文献   

12.
Humans are exposed to arsenic by inhalation and ingestion and are therefore may be affected by its toxicity. Arsenic may enter the human body by inhalation and ingestion. Cooking may alter the contents and chemical forms of arsenic. The determination of arsenic species in Lentinus edodes after microwave blanching was performed by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry. Using a physiologically based extraction, the bioaccessibility of arsenic species in raw L. edodes and microwave blanching treated L. edodes were determined after the simulated gastrointestinal digestion. The arsenate (AsV), arsenite (AsIII), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine, and arsenocholine did not undergo decomposition and transformation in this study. Furthermore, the total contents of arsenic in L. edodes samples were in the range of 0.1378?±?0.0044–0.2347?±?0.0144?mg/kg. Approximately 3.38–43.27% were released from samples into the blanching water after various microwave blanching treatments. The oxidation of AsIII and demethylation of DMA and MMA were observed in L. edodes during digestion, increasing the likelihood of arsenic toxicity in the liver. The health risk for arsenic in L. edodes was decreased after microwave blanching because the potentially available arsenic in microwave blanching treatments L. edodes samples (83.78?±?0.9103%) were lower than those in raw L. edodes samples (88.33?±?0.7983%). L. edodes subjected to microwave blanching prior to consumption significantly decreased the total arsenic content and the risk of arsenic exposure to consumers (p?相似文献   

13.
Gold ensembles for the trace level sensing of arsenic(III) in the presence of copper(II) are reported. The gold ensembles are fabricated using citrate capped gold nanoparticles which are chemically synthesised in an aqueous solution with an aliquot of this simply cast onto an economical and disposable screen printed electrode. After drying at room temperature, the gold ensembles are ready for use. The gold ensembles are explored towards the sensing of arsenic(III) in the presence of copper(II) using anodic stripping voltammetry where the corresponding stripping peaks are well resolved and using this protocol it is possible to readily detect 3 µg L?1 (3 ppb) with a detection limit of 0.4 µg L?1 (0.4 ppb). Proof‐of‐concept is also shown for the sensing of arsenic(III) in a canal water sample. Given the low cost of the sensor and ease of fabrication, the gold ensembles hold promise for the sensing of arsenic(III) in water samples where copper(II) may be present.  相似文献   

14.
The toxicity of inorganic trivalent arsenic for living organisms is reduced by in vivo methylation of the element. In man, this biotransformation leads to the synthesis of monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are efficiently eliminated in urine along with the unchanged form (Asi). In order to document the methylation process in humans, the kinetics of Asi, MMA and DMA elimination were studied in volunteers given a single dose of one of these three arsenicals or repeated doses of Asi. The arsenic methylation efficiency was also assessed in subjects acutely intoxicated with arsenic trioxide (As2O3) and in patients with liver diseases. Several observations in humans can be explained by the properties of the enzymic systems involved in the methylation process which we have characterized in vitro and in vivo in rats as follows: (1) production of Asi metabolites is catalyzed by an enzymic system whose activity is highest in liver cytosol; (2) different enzymic activities, using the same methyl group donor (S-adenosylmethionine), lead to the production of mono- and di-methylated derivatives which are excreted in urine as MMA and DMA; (3) dimethylating activity is highly sensitive to inhibition by excess of inorganic arsenic; (4) reduced glutathione concentration in liver moderates the arsenic methylation process through several mechanisms, e.g. stimulation of the first methylation reaction leading to MMA, facilitation of Asi uptake by hepatocytes, stimulation of the biliary excretion of the element, reduction of pentavalent forms before methylation, and protection of a reducing environment in the cells necessary to maintain the activity of the enzymic systems.  相似文献   

15.
Water and ‘soft’ extractions (hydroxylammonium hydrochloride, ammonium oxalate and orthophosphoric acid) have been studied and applied to the determination of arsenic species (arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in three environmental solid reference materials (river sediment, agricultural soil, sewage sludge) certified for their total arsenic content. The analytical method used was ion exchange liquid chromatography coupled on‐line to atomic fluorescence spectroscopy through hydride generation. Very low detection limits for arsenic were obtained, ranging from 0.02 to 0.04 mg kg?1 for all species in all matrices studied. Orthophosphoric acid is the best extractant for sediment (mixed origin) and sludge samples (recent origin) but not for the old formation soil sample, from which arsenic is extracted well only by oxalate. Both inorganic forms (As(III) and As(V)) are significant in all samples, As(V) species being predominant. Moreover, organic forms are found in water extracts of all samples and are more important in the sludge sample. These organic forms are also present in the ‘soft’ extracts of sludge. Microwave‐assisted extraction appears to minimize the risk of a redox interconversion of inorganic arsenic forms. This study points out the necessity of combining direct and sequential extraction procedures to allow for initial arsenic speciation and to elucidate the different mineralogical phases–species associations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A new and highly sensitive inhibitory kinetic fluorescence method for the determination of arsenic (III) has been established based on its inhibitory effect on the oxidation reaction of Acridine red (ADR) by KBrO3 in sulphuric acid medium. The reaction has been followed by measuring the enhancement of fluorescence at 550?nm. It relies on the linear relationship where the change in the fluorescence (ΔF) versus added As(III) amounts in the range of 0–0.450?µg?mL?1 is plotted, under the optimum conditions. The sensitivity of the proposed method, i.e. the limit of detection, is 2.1?×?10?2?ng?mL?1. The method is featured with good accuracy and reproducibility for arsenic (III) determination. This method was successfully applied for the quantitative determination of arsenic (III) in food products samples, and the relative standard deviations and the recoveries were in ranges of 2.31–2.83% and 90.0–107.2%, respectively. A review of recently published catalytic or inhibiting kinetic methods for the determination of arsenic (III) has also been presented for comparison. The mechanism of reaction was studied.  相似文献   

17.
Total urinary arsenic determinations are often used to assess occupational exposure to inorganic arsenic. Ingestion of sea food can increase the normal background levels of total arsenic in urine by up to an order of magnitude, but this arsenic has relatively little toxicity; it is tightly bound as arsenobetaine. The excretion of inorganic arsenic and its metabolites dimethylarsenic acid (DMA) and monomethylarsonic acid (MMA) is not influenced by the consumption of arsenic from sea food. Specific measurements of DMA, MMA and inorganic arsenic provide a more reliable indicator or exposure than total urinary arsenic levels. An automated atomic absorption method involving high-performance liquid chromatographic separation of the arsenic species and continuous hydride generation is described for the determination of arsenite, arsenate, DMA and MMA at μg As l?1 levels. The method is used to study normal urinary arsenic levels in laboratory staff and arsenic excretion by exposed workers.  相似文献   

18.
王振华  何滨  史建波  阴永光  江桂斌 《色谱》2009,27(5):711-716
建立了一种利用高效液相色谱-双通道原子荧光检测联用同时进行砷和硒形态分析的方法。以10 mmol/L NH4H2PO4溶液(pH 5.6)(添加2.5%(体积分数)的甲醇)为流动相,在12 min内同时分离了三价砷(As(III))、一甲基砷(MMA)、二甲基砷(DMA)、五价砷(As(V))、硒代胱氨酸(SeCys)、硒代蛋氨酸(SeMet)和四价硒[Se(IV)]等化合物。As(III)、DMA、MMA、As(V)、SeCys、SeMet和Se(IV)的检出限分别为1,3,2,3,4,18和3 μg/L (进样量为200 μL),5次测定的相对标准偏差为1.9%~6.1%(As 100 μg/L, Se 300 μg/L)。应用该方法对人体尿样及硒酵母片中砷和硒的形态进行了分析,目标物在尿样中的加标回收率为83%~108%,在硒酵母片中的加标回收率为88%~105%。实验结果表明,该方法可用于尿样及药品中砷和硒形态的日常分析。该方法减少了样品的分析时间和试剂用量,降低了工作强度,提高了工作效率。  相似文献   

19.
Arsenic compounds including arsenous acid (As(III)), arsenic acid (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were separated by high-performance liquid chromatography (HPLC) and detected by inductively coupled plasma mass spectrometry (ICP-MS). A Hamilton PRX-100 anionic-exchange column and a pH 8.5 K2HPO4/KH2PO4 5.0 × 10−3 mol L−1 mobile phase were used to achieve arsenic speciation. The separation of arsenic species provided peaks of As(III) at 2.75 min, DMA at 3.33 min, MMA at 5.17 min and As(V) at 12.5 min. The detection limits, defined as three times the standard deviation of the lowest standard measurements, were found to be 0.2, 0.2, 0.3 and 0.5 ng mL−1 for As(III), DMA, MMA and As(V), respectively. The relative standard deviation values for a solution containing 5.0 μg L−1 of As(III), DMA, MMA and As(V) were 1.2, 2.1, 2.5 and 3.0%, respectively. This analytical procedure was applied to the speciation of arsenic compounds in drinking (soft drink, beer, juice) samples. The validation of the procedure was achieved through the analysis of arsenic compounds in water and sediment certified reference materials.  相似文献   

20.
Traces amounts of arsenic and antimony in water samples were determined by gas chromatography with a photoionization detector after liquidnitrogen cold trapping of their hydrides. The sample solution was treated with sodium hydroborate (NaBH4) under weak-acid conditions for arsenic(III) and antimony(III) determination, and under strong-acid conditions for arsenic(III+V) and antimony(III+V) determination. Large amounts of carbon dioxide (CO2) and water vapor obscured determination of arsine and stibine. Better separation from interference could be achieved by removing CO2 and water vapor in two tubes containing sodium hydroxide pellets and calcium chloride, respectively. The detection limits of this method were 1.8 ng dm?3 for arsenic and 9.4 ng dm?3 for antimony in the case of 100-cm3 sample volumes. Therefore, it is suitable for determination of trace arsenic and antimony in natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号