首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Data on the special salt effect in monomolecular heterolysis reactions (Sn1, E1, solvolysis) are summarized and critically analyzed. The mechanisms suggested by Ingold, Winstein, Dannenberg, Okamoto, and the authors are discussed. The special salt effect is due to the effect of a salt on the contact ion pair of a substrate. Quadrupoles and ion triplets are formed. In the limiting step of the heterolysis, a contact ion pair interacts with a solvent cavity. Association of salts with a contact ion pair increases the lifetime of the cationoid and the probability of its contact with the solvent cavity. A spatially separated ion pair is formed, which rapidly transforms into a solvation-separated ion pair, which, also rapidly, yields reaction products.  相似文献   

2.
Critical analysis of the evidence for the operation of the “negative effect of nucleophilic solvation” in the monomolecular heterolysis reactions of organic compounds was performed. The existence of this effect is not proved.  相似文献   

3.
Quantitative analysis of the effect of solvent parameters on the rate of heterolysis of tert-butyl chloride was performed; the reaction rate is fairly described by the polarity, polarizability, and electrophilicity parameters or by the ionizing ability parameter, while the nucleophilicity of the solvent has no rate effect. A negative effect of nucleophilic solvation was revealed in protic solvents.  相似文献   

4.
Heterolysis of 1-bromo-1-methylcyclohexane in cyclohexane (E1 reaction) involves solvation of the transition state (ΔS = ?81 J mol?1K?1), while heterolysis of 1-chloro-1-methylcyclohexane is characterized by desolvation of the transition state (ΔS = 92 J mol?1K?1). The probability for the formation of transition state (interaction between cationoid intermediate and solvent cavity) increases in the first case due to enhanced stability of the solvated intermediate, and in the second, due to reduction in its size. The bromide/chloride heterolysis rate ratio decreases as the ionizing power of aprotic solvent decreases and that of protic solvent increases.  相似文献   

5.
The rate constant of the first-order rate equation w = k[RX] that is derived from the variation of the reaction product concentration or determined by the verdazyl method characterizes the lifetime of the transition state or that of the solvent-separated ion pair rather than the heterolysis rate. The diffusion rate constant is equal to the dissociation rate constant of the contact ion pair and to the reverse of the lifetime of the solvent-separated ion pair: k Dk = 1/τ ≈ 1010 s−1.  相似文献   

6.
Rate constants for heterolytic fragmentation of beta-(ester)alkyl radicals were determined by a combination of direct laser flash photolysis studies and indirect kinetic studies. The 1,1-dimethyl-2-mesyloxyhexyl radical (4a) fragments in acetonitrile at ambient temperature with a rate constant of k(het) > 5 x 10(9) s(-1) to give the radical cation from 2-methyl-2-heptene (6), which reacts with acetonitrile with a pseudo-first-order rate constant of k = 1 x 10(6) s(-1) and is trapped by methanol in acetonitrile in a reversible reaction. The 1,1-dimethyl-2-(diphenylphosphatoxy)hexyl radical (4b) heterolyzes in acetonitrile to give radical cation 6 in an ion pair with a rate constant of k(het) = 4 x 10(6) s(-1), and the ion pair collapses with a rate constant of k < or = 1 x 10(9) s(-1). Rate constants for heterolysis of the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(diphenylphosphatoxy)ethyl radical (5a) and the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(trifluoroacetoxy)ethyl radical (5b) were measured in various solvents, and an Arrhenius function for reaction of 5a in THF was determined (log k = 11.16-5.39/2.3RT in kcal/mol). The cyclopropyl reporter group imparts a 35-fold acceleration in the rate of heterolysis of 5a in comparison to 4b. The combined results were used to generate a predictive scale for heterolysis reactions of alkyl radicals containing beta-mesyloxy, beta-diphenylphosphatoxy, and beta-trifluoroacetoxy groups as a function of solvent polarity as determined on the E(T)(30) solvent polarity scale.  相似文献   

7.
Various types of isokinetic (isoparametric) relationships in heterolytic reactions were summarized and critically analyzed. It was presumed that the series of substrate reactivity is reversed after passing the isoparametric point, and the bimolecular reaction mechanism changes to unimolecular: SN2-SN1, SN2-E1, SE2-SE1, SE2-SN1, and SN2(SSIP)-SN2(C+). Three particular cases of isoparametric relationships are discussed: (1) isoentropy (ΔS = const) which reflects formation of contact ion pair; (2) isoenthalpy (ΔH = const) which reflects formation of space-separated ion pair; and (3) isoenergy (ΔG = const), when ΔH = ΔG = ΔE r. The rate of heterolysis in cyclohexane does not depend on the substrate nature, and a universal minimal rate of heterolysis exists, k25 ≈ 10−10 s−1, τ1/2 = 220 years. There is no nucleophilic assistance by the solvent in unimolecular heterolysis.  相似文献   

8.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

9.
Regression analysis of the solvent effects on the rate constants of nucleophilic substitution at the phosphoryl group was performed with the use of the empirical parameters of solvent polarity which characterize the ability of the solvents to electrophilic and nucleophilic solvation. The nucleophilic solvation of reagents by solvents, as a rule, favors the phosphorylation reactions. In the phosphorylation reactions of anionic nucleophiles, the electrophilic solvation of anions influences negatively the reactions rates. The phosphorylation of amines by chlorides of phosphorus acids is facilitated by the electrophilic solvation of a separated anion. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 271–274, February, 1998.  相似文献   

10.
The reaction of triphenylverdazyls with strong acids in acetonitrile in the presence of salts with chloride anion is reversible. The observed rate of the heterolysis of 1-adamantyl picrate in the presence of triphenylverdazyls does not depend on the substituent in the latter and its concentration. The contribution of the verdazyl alkylation pathway is minor, the indicator is consumed mainly in the reaction with the acid liberated from the solvolysis. Thus, triphenylverdazyls are not indicators for the solvent-separated ion pairs.  相似文献   

11.
P. Sarthou  G. Bram  F. Guibe  J. Corset 《Tetrahedron》1980,36(8):1043-1050
The structure and the nucleophilic reactivity of crowned (18-crown-6) or cryptated {cryptand (2.2.2)} potassium ethyl acetoacetate enolate have been compared in tert-butanol and in DME (or THF). In the protic solvent tert-butanol, the crowned and the cryptated potassium enolate species both exist as loose ion pairs in which the enolate anion, strongly hydrogen-bonded to the solvent, is in a “transoid” (non chelating) conformation. Both species show similar reactivities towards alkylating agents but completely different reactivities are observed in aprotic weakly dissociating media (THF, DME). In contrast to what is observed in tert-butanol, the cryptated species and the crowned species have very different nucleophilic reactivities in THF or DME; in those solvents only the cryptated species retains a loose ion pair structure; the crowned species is a contact ion pair in which the enolate anion chelates the potassium cation. The solvation of this crowned chelate species by tert-butanol has been demonstrated in binary mixtures of solvents (C6D6-t-BuOH, THF-t-BuOH). The oxygen basicity of the enolate anion is very different in the crowned chelated ion pair compared with the cryptand separated ion pair.  相似文献   

12.
Flash photolysis of p-hydroxybenzyl acetate in aqueous perchloric acid solution and formic acid, acetic acid, biphosphate ion, and tris(hydroxymethyl)methylammonium ion buffers produced p-quinone methide as a short-lived species that underwent hydration to p-hydroxybenzyl alcohol in hydronium ion catalyzed (k(H(+)) = 5.28 x 10(4) M(-1) s(-1)) and uncatalyzed (k(uc) = 3.33 s(-1)) processes. The inverse nature of the solvent isotope effect on the hydronium ion-catalyzed reaction, k(H(+))/k(D(+)) = 0.41, indicates that this process occurs by rapid and reversible protonation of the quinone methide on its carbonyl carbon atom, followed by rate-determining capture of the p-hydroxybenzyl carbocation so produced by water, while the magnitude of the rate constant on the uncatalyzed process indicates that this reaction occurs by simple nucleophilic addition of water to the methylene group of the quinone methide. p-Quinone methide also underwent hydronium ion-catalyzed and uncatalyzed nucleophilic addition reactions with chloride ion, bromide ion, thiocyanate ion, and thiourea. The solvent isotope effects on the hydronium ion-catalyzed processes again indicate that these reactions occurred by preequilibrium mechanisms involving a p-hydroxybenzyl carbocation intermediate, and assignment of a diffusion-controlled value to the rate constant for reaction of this cation with thiocyanate ion led to K(SH) = 110 M as the acidity constant of oxygen-protonated p-quinone methide. In a certain perchloric acid concentration range, the bromide ion reaction became biphasic, and least-squares analysis of the kinetic data using a double-exponential function provided k(Br(-)) = 3.8 x 10(8) M(-1) s(-1) as the rate constant for nucleophilic capture of the p-hydroxybenzyl carbocation by bromide ion, k(ionz) = 8.5 x 10(2) s(-1) for ionization of the carbon-bromine bond of p-hydroxybenzyl bromide, and K = 4.5 x 10(5) M(-1) as the equilibrium constant for the carbocation-bromide ion combination reaction, all in aqueous solution at 25 degrees C. Comparisons are made of the reactivity of p-quinone methide with p-quinone alpha,alpha-bis(trifluoromethyl)methide as well as p-quinone methide with o-quinone methide.  相似文献   

13.
Miranda N  Xu L  Newcomb M 《Organic letters》2004,6(24):4511-4514
Zinc bromide-catalyzed heterolysis reactions of glycol ether radicals were studied by laser flash photolysis methods, which gave the binding constants and catalytic rate constants for fragmentation. The Lewis acid-catalyzed heterolysis reactions mimic a putative reaction pathway in diol dehydratase-catalyzed reactions and are potentially useful polar processes for incorporation into conventional radical chain reaction sequences. [reaction: see text]  相似文献   

14.
The rate of heterolysis of 1-bromo-1-methylcyclopentane and 1-bromo-1-methylcyclohexane is determined by the equation v = k[RBr], mechanism E1. Comparative correlation analysis of solvation effects in heterolysis of these substrates and 2-brom-2-methyladamantane was performed.  相似文献   

15.
Heterolysis of t-BuBr and t-BuI in aprotic solvents involves a H - S compensation effect. The G of t-BuBr heterolysis in aprotic solvents decreases with increasing solvent polarity and cohesion, whereas the respective value for t-BuI heterolysis decreases with increasing solvent polarity, nucleophilicity, and polarizability. In protic solvents, a negative effect of nucleophilic solvation is observed.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 9, 2004, pp. 1476–1483.Original Russian Text Copyright © 2004 by Ponomarev, Zaliznyi, Dvorko.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

16.
In the series of substrates 1-bromo-1-methylcyclopentane, 1-bromo-1-methylcyclohexane, 1-methyl-1-chlorocyclopentane, 1-methyl-1-chlorocyclohexane, the heterolysis rate in acetone at 25 °C is reduced by four orders of magnitude; v = k[RX], E1 mechanism. The decrease in reaction rate as we go from a cyclopentyl compound to a cyclohexyl compound is due to the decrease in entropy of activation as a result of rapid solvation of the transition state as the conformational barrier is overcome.  相似文献   

17.
FTIR spectra have been recorded and analyzed for solutions of lithium perchlorate in propylene carbonate (PC), diethyl carbonate (DEC), and PC + DEC mixtures. It has been shown that the carbonyl stretch bands for PC and DEC are very sensitive to the interaction between Li+ and the solvent molecules. They split with addition of LiClO4, indicating a strong interaction of Li+ with PC and DEC through the oxygen group of PC and both oxygen and ether oxygen atoms of DEC. In conjunction with molecular orbital calculation, the optimized geometries of solvation are given. In addition, solvent separated ion pairs and contact ion pairs were observed in LiClO4/DEC solutions, and no preferential solvation of Li+ in LiClO4/PC + DEC solutions were detected.  相似文献   

18.
The acceleration effect of poly(ethylene oxide) on nucleophilic reactions was investigated. The enhancement of the reaction rate was interpreted by the cooperative solvation of alkali metal ions with ethereal oxygens of PEO resulting in active nucleophilic anions. In relation to the complex formation of alkali metal ions with PEO, the oligo(ethylene oxide) derivatives were prepared as the synthetic ionophores, which were able to transport alkali metal ions selectively through a liquid membrane against the alkali metal ion concentration.  相似文献   

19.
The distribution of products of benzhydryl bromide heterolysis in the presence of triphenylverdazyl in anhydrous nitrobenzene and propylene carbonate, as well as in anhydrous acetonitrile in the presence of benzyltriethylammonium chloride was studied. In kinetic experiments the contribution of verdazyl alkylation was always minor, and verdazyl was mostly consumed in the reaction with HBr evolved during solvolysis. Thus, triphenylverdazyl is not an indicator of the solvent-separated ion pair of benzhydryl bromide.  相似文献   

20.
The solvent effect on the rate constant of the reaction of picryl chloride with diphenylphosphinic hydrazide can be quantitatively described by a two-parameter equation considering the basicity and polarity of the medium. The reaction proceeds via formation of a charge-transfer complex between the reagents. Its nucleophilic solvation facilitates formation of the final products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号