首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
SNPs are one of the main sources of DNA variation among humans. Their unique properties make them useful polymorphic markers for a wide range of fields, such as medicine, forensics, and population genetics. Although several high-throughput techniques have been (and are being) developed for the vast typing of SNPs in the medical context, population genetic studies involve the typing of few and select SNPs for targeted research. This results in SNPs having to be typed in multiple reactions, consuming large amounts of time and of DNA. In order to improve the current situation in the area of human Y-chromosome diversity studies, we decided to employ a system based on a multiplex oligo ligation assay/PCR (OLA/PCR) followed by CE to create a Y multiplex capable of distinguishing, in a single reaction, all the major haplogroups and as many subhaplogroups on the Y-chromosome phylogeny as possible. Our efforts resulted in the creation of a robust and accurate 35plex (35 SNPs in a single reaction) that when tested on 165 human DNA samples from different geographic areas, proved capable of assigning samples to their corresponding haplogroup.  相似文献   

2.
Inherited DNA polymorphisms located within the nonrecombing portion of the human Y chromosome provide a powerful means of tracking the patrilineal ancestry of male individuals. Recently, we introduced an efficient genotyping method for the detection of the basal Y‐chromosome haplogroups A to T, as well as an additional method for the dissection of haplogroup O into its sublineages. To further extend the use of the Y chromosome as an evolutionary marker, we here introduce a set of genotyping assays for fine‐resolution subtyping of haplogroups E, G, I, J, and R, which make up the bulk of Western Eurasian and African Y chromosomes. The marker selection includes a total of 107 carefully selected bi‐allelic polymorphisms that were divided into eight hierarchically organized multiplex assays (two for haplogroup E, one for I, one for J, one for G, and three for R) based on the single‐base primer extension (SNaPshot) technology. Not only does our method allow for enhanced Y‐chromosome lineage discrimination, the more restricted geographic distribution of the subhaplogroups covered also enables more fine‐scaled estimations of patrilineal bio‐geographic origin. Supplementing our previous method for basal Y‐haplogroup detection, the currently introduced assays are thus expected to be of major relevance for future DNA studies targeting male‐specific ancestry for forensic, anthropological, and genealogical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号