首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optical fiber biosensor has been developed for the determination of catecholamines (dopamine, norepinephrine and epinephrine) based on the recognition capacity of the enzyme laccase. In this study, a glass tube constituted by a fused silica fiber coated with a film of polystyrene/divinylbenzene resin (PS/DVB) was used for catecholamines separation. Firstly, the analyzer was tested for calibration and its analytical performance for catecholamines detection was compared with a classical analytical method, namely high performance liquid chromatography-electrochemical detector (HPLC-ED). The developed analytical device shows a high potential for catecholamines quantification with a detection limit of 2.1, 2.6 and 3.4 pg mL−1 for dopamine, norepinephrine and epinephrine, respectively. The analytical sensitivity, inferred from the slope of the calibration curves established for a range of concentrations between 5 and 125 pg mL−1, was found to be 0.344, 0.252 and 0.140 dB/pg mL−1 for dopamine, norepinephrine and epinephrine, respectively. Furthermore, catecholamines speciation with the PS/DVB fiber was completely achieved in 3 min. The analytical performance of the reported sensor was also evaluated and found adequate for catecholamines determination in human urine and plasma samples.  相似文献   

2.
Summary A dual-step procedure for the rapid, quantitative isolation of free catecholamines (norepinephrine, epinephrine and dopamine) from plasma, using a little column of CM-Sephadex and alumina adsorption, is described. Sensitive high performance liquid chromatography is also discussed, employing an amperometric detector for the quantitative determination. The recovery of the three catecholamines, and of N-methyldopamine used as the internal standard, was about 70–80%; the detection limits were 2pg for norepinephrine, 3pg for epinephrine and 3pg for dopamine. The combination of the rather specific and easy to handle two-step sample clean-up procedure, the high resolving power of the chromatography and the high sensitivity of electrochemical detection provided a simple method for the determination of free catecholamines in plasma samples of normal and essential hypertensive subjects under different conditions (supine position for 45 min, standing for 5 and 10 min). It was found that a significant increase in epinephrine levels (P<0.01) occurred in hypertensive patients under the three conditions studied.  相似文献   

3.
A simple and reliable high-performance liquid chromatographic method is described for the routine determination of the free catecholamines (norepinephrine, epinephrine and dopamine) in urine. The catecholamines are isolated from urine samples using small affinity chromatography columns prepacked with immobilised m-aminophenylboronic acid, separated by ion-pair reversed-phase liquid chromatography and quantified by electrochemical detection. Total analysis, including sample preparation time, is achieved in less than 30 min with analytical recoveries of 92-96% for all three catecholamines. Long-term stability and reproducibility of the liquid chromatographic system is attained by selection of optimised conditions for chromatographic separation with a formate mobile phase and produces detection limits of 1.4, 1.8 and 2.2 nmol/l for norepinephrine, epinephrine and dopamine, respectively, in urine samples and day-to-day coefficients of variation of less than 6%. Furthermore, the affinity isolation gels can be reused a minimum of ten times providing a rapid and cost-effective means of sample preparation.  相似文献   

4.
Analysis of plasma catecholamines (norepinephrine, epinephrine and dopamine) by high-performance liquid chromatography using 1,2-diphenylethylenediamine as a fluorescent reagent is described. We have developed an automatic catecholamine analyser, based on pre-column fluorescence derivatization and column switching. The analysis time for one assay was 15 min. The correlation coefficients of the linear regression equations were greater than 0.9996 in the range 10-10,000 pg/ml. The detection limit, at a signal-to-noise ratio of 3, was 2 pg/ml for dopamine. A new method of sample preparation for the pre-column fluorescence derivatization of plasma catecholamines was used. In order to protect the catecholamines from decomposition, an ion-pair complex between boric acid and the diol group in the catecholamine was formed at a weakly alkaline pH. The stabilities of plasma catecholamines were evaluated at several temperatures. After complex formation, the catecholamines were very stable at 17 degrees C for 8 h, and the coefficients of variation for norepinephrine, epinephrine and dopamine were 1.2, 4.2 and 9.3%, respectively.  相似文献   

5.
A high-performance liquid chromatographic procedure is described for the quantitative determination of epinephrine, norepinephrine, and dopamine in human plasma. The method, which is based on adsorption of the catecholamines to alumina and, after liberation, separation on a microparticulate bonded strong cation-exchange resin and amperometric detection, has been optimized to give complete baseline separation of the substances of interest. Dihydroxybenzylamine, a nonendogenous catecholamine, is used as the internal standard. The detection limit is about 0.1 pmol for dopamine. Analysis of data obtained for norepinephrine and epinephrine from a total of 59 plasma samples showed a good correlation to the corresponding values obtained with a radioenzymatic method. Some results from normal and pathological conditions are compared.  相似文献   

6.
A simple and selective one-step solid-phase extraction procedure using chemically modified polymer resin (Amberlite XAD-4) with crown ether was investigated for the measurement of urinary catecholamines. After loading the urine samples (adjusted to pH 4) on the synthesized adsorbent cartridge, the column was washed with methanol followed by water and then the adsorbed catecholamines were eluted by 1.0 mL of 6.0 M acetic acid. The effectiveness of sample clean-up method was demonstrated by reversed-phase ion-pair high-performance liquid chromatography with electrochemical detection. Under optimal condition, the recoveries of epinephrine, norepinephrine, and dopamine from spiked urine sample were >86% for all catecholamines. The detection limits (n=5) for epinephrine, norepinephrine, and dopamine were 37, 52, and 46 nmol/L, respectively.  相似文献   

7.
The plasma catecholamine include mainly norepinephrine(NE),epinephrine(E) and dopamine (DA). The catecholamines(CA) are nervous mediator which are synthesized and release from sympathetic system. It is significant for diagnosing disease and researching surgical stress in clinic that determine the concentration of catecholamine in plasma.The analytic method had traditionally radioactive enzyme, fluorescent spectrometry and high performance liquid chromatography(HPLC). This paper describe an analytical technique that determine the concentration of NE, E and DA in plasma using HPLC-ED. The method is sensitive, fast and accuracy,and can be applied for the clinical diagnosis and laboratory research.  相似文献   

8.
This paper describes a comparative evaluation of disposable carbon electrodes and conventional glassy carbon electrodes. The detection of catecholamines was demonstrated in processed blood plasma and in the presence of catecholamine metabolites. Calibration plots of norepinephrine, epinephrine, 3,4‐dihydroxybenzylamine and dopamine were linear over three to four orders of magnitude with detection limits of 0.50, 0.73, 1.06, and 1.13 pg, respectively. The relative standard deviation of peak areas was ±2.3% for norepinephrine and ±5.3% for epinephrine from 30 injections of a 10 ng/mL mixed standard. Spike recoveries for norepinephrine, epinephrine, and dopamine from human blood plasma were 86±6%, 81±5%, and 77±4%, respectively.  相似文献   

9.
The determination of catecholamines and their 3-O-methyl metabolites in a single mouse plasma is necessary to understand the role of the sympathetic nervous activity, while the inactivation of catecholamines by catechol-O-methyltransferase indicates the activity of blood pressure regulation in animals. Here we report the basal catecholamines and their 3-O-methyl metabolite concentrations obtained from 15 microL of mouse plasma utilizing semi-microcolumn high-performance liquid chromatography (HPLC)-peroxyoxalate chemiluminescence detection system. The concentrations were 6.63 +/- 1.37 pmol/mL plasma, 0.49 +/- 0.10 pmol/mL plasma, 5.25 +/- 2.30 pmol/mL plasma, 3.23 +/- 0.84 pmol/mL plasma, 0.44 +/- 0.11 pmol/mL plasma, and 3.39 +/- 1.67 pmol/mL plasma for norepinephrine, epinephrine, dopamine, normetanephrine, metanephrine and 3-methoxytyramine, respectively (n = 5-7). Further, when blood pressure was reduced by minoxidil, plasma catecholamines were found to be significantly increased by the baroreflex-mediated response in mouse.  相似文献   

10.
A totally automated and reliable high-performance liquid chromatographic method is described for the routine determination of free catecholamines (norepinephrine, epinephrine and dopamine) in urine. The catecholamines were isolated from urine samples using small alumina columns. A standard automated method for pH adjustment of urine before the extraction step has been developed. The extraction was performed on an ASPEC (Automatic Sample Preparation with Extraction Columns, Gilson). The eluate was collected in a separate tube and then automatically injected into the chromatographic column. The catecholamines were separated by reversed-phase ion-pair liquid chromatography and quantified by fluorescence detection. No manual intervention was required during the extraction and separation procedure. One sample may be run every 15 min, ca. 96 samples in 24 h. Analytical recoveries for all three catecholamines are 63-87%, and the detection limits are 0.01, 0.01, and 0.03 microM for norepinephrine, epinephrine and dopamine, respectively, which is highly satisfactory for urine. Day-to-day coefficients of variation were less than 10%.  相似文献   

11.
Abstract

A simplified HPLC assay is described for quantification of free urinary catecholamines. The procedure involves exraction of catecholamines, (norepinephrine, epinephrine and dopamine) from urine, using columns filled with Biorex-70. The catecholamines from the extract were separated on a high performance liquid chromatographic system using reverse phase C18, 5 u column and determined by electrochemical detection. Integration and calculations are achieved by a data module using area ratio method with dihydroxybenzylamine as internal standard. Recovery of more than 90% was achieved for each catecholamine. A linear relationship between a wide range of concentrations and ratio of the area of amines to that of internal standard was observed. The method is simple and rapid and therefore can be used to analyze a large number of samples in one day and should prove useful in studies involving the role of catecholamines in different psychiatric disorders.  相似文献   

12.
以多巴胺(DA)为模板, 多孔阳极氧化铝膜(AAO)为反应载体, 合成了多巴胺分子印迹聚合物纳米管膜(AAO@MIP). 利用扫描电子显微镜对分子印迹纳米管膜的形貌进行了表征, 并用高效液相色谱(HPLC)研究了其对儿茶酚胺类(CLs)药物的吸附性能. 实验结果表明, 在最优萃取条件下, AAO@MIP 纳米管膜对多巴胺、 肾上腺素和去甲肾上腺素具有较高的选择性, 3种儿茶酚胺类药物在0.50~300 μmol/L浓度范围内呈良好的线性关系(r2>0.9970); 检出限(S/N=3)分别为15.5, 12.6和22.5 ng/L. AAO@MIP纳米管膜对多巴胺的最大吸附容量可达82.1 μmol/g; 6次吸附-解吸附重复利用后, 吸附容量仅降低3.3%.AAO@MIP 纳米管膜应用于萃取人体尿液中3种儿茶酚胺, 样品加标回收率为74.0%~100.4%, 相对标准偏差(RSD)为3.6%~6.8%. 该方法简便、 快速、 选择性高, 适用于检测人体尿液中的儿茶酚胺类药物的含量.  相似文献   

13.
A liquid chromatography–chemiluminescence detection method was developed and validated for the determination of catecholamines (norepinephrine, epinephrine, and dopamine) in mouse brains. Chromatography was performed on a strong cation exchange column (150 × 2.0-mm id) using an isocratic mobile phase of 65 mM potassium acetate/75 mM potassium phosphate (95:5, pH 3.5) at a flow rate of 0.2 mL/min following post-column fluorescence derivatization of catecholamines with ethylenediamine and peroxyoxalate chemiluminescence reaction detection. The recovery of catecholamines added to mouse brain samples was more than 95.0%, while intra- and inter-day precision of the assay were <4.8%. The validated method was used to determine norepinephrine and dopamine concentrations in mouse brains without prior sample purification.  相似文献   

14.
An analytical method, based on separation with gas chromatography (GC) and detection with optical fiber (OF), was used for the separation, detection and quantification of benzene, toluene, ethylbenzene, p-xylene, m-xylene and o-xylene. The use of OF as a detector is based on the variations of the reflected optical power detected when the aromatic compounds eluted from the GC column are sorbed in a thin polymeric film on a single-mode OF. General figures of merit, such as the analytical time, analytical error and analytical performance of GC-OF were similar to those of the classical analytical methods, such as a gas chromatography-flame ionization detector (GC-FID). However, the developed GC-OF method constitutes a much less expensive alternative for the speciation of aromatic hydrocarbons compounds, with high accuracy, and being most suitable for actual monitoring work on confined environments.  相似文献   

15.
A new method was developed for the simultaneous determination of three catecholamines in urine using aminophenylboronic acid functionalized magnetic nanoparticles extraction followed by high‐performance liquid chromatography with electrochemical detection. Novel aminophenylboronic acid functionalized magnetic nanoparticles were prepared by multi‐step covalent modification, and characterized by transmission electron microscopy, Fourier‐transformed infrared spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. With the help of the high affinity between the boronate and cis‐diol group, the particles were used for the highly selective separation and enrichment of three major catecholamines, norepinephrine, epinephrine, and dopamine. Effects of the pH of the feed solution, the extraction time, the composition of the buffer solution, the amount of the magnetic particles, the elution conditions, and the recycling of aminophenylboronic acid functionalized magnetic nanoparticles were explored. Under the optimized conditions, 13–17‐fold enrichment factors were obtained. The linear ranges were 0.01–2.0 μg/mL for the studied analytes. The limits of detection and quantification were in the range of 2.0–7.9 and 6.7–26.3 ng/mL, respectively. The relative recoveries were in the range of 92–108%, with intraday and interday relative standard deviations lower than 6.8%. This method was successfully applied to analysis of catecholamines in real urine.  相似文献   

16.
An assay of norepinephrine (NE), epinephrine (E), dopamine (DA), normetanephrine (NE) and metanephrine (MN) based on high-performance liquid chromatography (HPLC) in combination with atmospheric pressure chemical ionization mass spectrometry (APcI-MS) is described. The catecholamines and metanephrines were extracted from urine and aqueous samples using Bio-Rex 70 cation-exchange resin and subjected to analysis by HPLC/APcI-MS. The separation was performed on a C18 column in 50 mM ammonium formate buffer, pH 3.0, using a flow rate of 0.8 mL/min. Acetonitrile was added post-column at a flow rate of 0.2 mL/min via a post-column addition tee. The total analysis time was 6.5 min. The quantitative analysis was performed using 3,4-dihydroxybenzylamine (DHBA) as the internal standard (I.S.). Selected ion monitoring detection was applied: m/z 170 (for NE), 184 (for E and NM), 154 (for DA), 198 (for MN) and 140 (for DHBA, I.S.). The limits of quantitation were 5 ng/mL for NE, E and DA and 2.5 ng/mL for NM and MN. The recovery ranged from 75 to 83% for each analyte. The method was found to be simple and highly selective for the determination of catecholamines and metanephrines in the urine of patients suspected of pheochromocytoma.  相似文献   

17.
A gas-liquid chromatographic method has been developed using the hydrogen flame detector to determine epinephrine (E) and norepinephrine (NE) in blood plasma, red blood cells, serum, and urine. The chromatographic method presents several advantages over other existing techniques. The derivatives enable separation of E and NE and are stable at room temperature with no signs of decomposition. The detection limit for the catecholamines with the hydrogen detector was approximately 0.1 pg. The catecholamines can be determined simultaneously from the same gas-liquid chromatogram. Purification of the catecholamines using the conventional procedure of chromatographing on alumina has been eliminated. With this gas chromatographic method, no by-products are formed that interfere with E and NE determinations. Dopamine, which constitutes the major source of interference in the commonly used fluorometric methods, does not interfere with the E and NE determinations. Norepinephrine and epinephrine values for several physiological fluids are given with the analysis expanded to include red blood cells, the contents of which have not been previously reported.  相似文献   

18.
We report a sensitive and reliable assay for the determination of the urinary catecholamines norepinephrine, epinephrine and dopamine, based on selective extraction by a liquid-liquid extraction procedure, followed by selective derivatization with the fluorigenic agent 1,2-diphenylethylenediamine and quantification by high-performance liquid chromatography with fluorimetric detection. Comparison with a method using electrochemical detection shows that interference of an unknown compound, most probably N-methylepinephrine, which is an often-overlooked problem with methods using electrochemical detection and results in falsely high epinephrine concentrations, does not occur with the described fluorimetric method.  相似文献   

19.
Abstract

A method is described for the simultaneous separation and estimation of the catecholamines, norepinephrine and dopamine and their monohydroxy-equivalents, octopamine and tyramine. The method employs high-performance liquid chromatographic separation of the compounds on a C18 reverse-phase column with a mobile phase containing methanol as the organic modifier, octane sulphonate as an ion-pair reagent and acetic acid/ammonium hydroxide buffer. The influences of electrode potential and solvent pH on detector response were studied, and the optimal conditions identified as detector potential of 0.95 volts and pH 6.0. The technique of post-column mixing was introduced to provide optimal pH conditions for detector response without the constraint of on-column oxidation of catecholamines. The effects of buffer ionic strength on retention factors and detector response were also investigated and, on the basis of the results obtained, the optimal buffer strength was identified as 0.08–0.09 molar. The described procedure can be used for simultaneous estimation of catecholamines and monohydroxyphenolamines at concentrations between 200–5000 pg.  相似文献   

20.
Liu L  Li Q  Li N  Ling J  Liu R  Wang Y  Sun L  Chen XH  Bi K 《Journal of separation science》2011,34(10):1198-1204
A simple and specific high-performance liquid chromatography method coupled with fluorescence detection (HPLC-FL) has been developed for the simultaneous determination of L-3,4-dihydroxyphenylalanine, norepinephrine, dopamine, epinephrine and 3,4-dihydroxyphenylacetic acid in human urine. The samples were derivatized by 1,2-diphenylethylenediamine with isoprenaline as internal standard. The factors affecting the fluorescence yield were investigated, including the reaction and separation conditions. The catecholamine derivatives were separated on a Kromasil C(18) column with methanol and sodium acetate buffer as mobile phase. The limits of detection for all catecholamines ranged from 0.2 to 1.1 ng/mL. The linear ranges were from 2.5 to 200 ng/mL except 3,4-dihydroxyphenylacetic acid from 5 to 200 ng/mL. The intra- and interday RSDs for all catecholamines were 1.0-8.0 and 2.1-14%, respectively. The method was successfully applied to determine the catecholamines in human urine from 14 Alzheimer's disease patients and 14 healthy volunteers. It was concluded that the mean levels of catecholamines in urine of Alzheimer's disease patients were all lower than those in healthy volunteers. The cluster analysis and independent samples T-test were used to distinguish the Alzheimer's disease patients and healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号