首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present two modified versions of the primal-dual splitting algorithm relying on forward–backward splitting proposed in V\(\tilde{\mathrm{u}}\) (Adv Comput Math 38(3):667–681, 2013) for solving monotone inclusion problems. Under strong monotonicity assumptions for some of the operators involved we obtain for the sequences of iterates that approach the solution orders of convergence of \(\mathcal{{O}}(\frac{1}{n})\) and \(\mathcal{{O}}(\omega ^n)\), for \(\omega \in (0,1)\), respectively. The investigated primal-dual algorithms are fully decomposable, in the sense that the operators are processed individually at each iteration. We also discuss the modified algorithms in the context of convex optimization problems and present numerical experiments in image processing and pattern recognition in cluster analysis.  相似文献   

2.
Computational Optimization and Applications - We develop a globalized Proximal Newton method for composite and possibly non-convex minimization problems in Hilbert spaces. Additionally, we impose...  相似文献   

3.
Our work considers the optimization of the sum of a non-smooth convex function and a finite family of composite convex functions, each one of which is composed of a convex function and a bounded linear operator. This type of problem is associated with many interesting challenges encountered in the image restoration and image reconstruction fields. We developed a splitting primal-dual proximity algorithm to solve this problem. Furthermore, we propose a preconditioned method, of which the iterative parameters are obtained without the need to know some particular operator norm in advance. Theoretical convergence theorems are presented. We then apply the proposed methods to solve a total variation regularization model, in which the L2 data error function is added to the L1 data error function. The main advantageous feature of this model is its capability to combine different loss functions. The numerical results obtained for computed tomography (CT) image reconstruction demonstrated the ability of the proposed algorithm to reconstruct an image with few and sparse projection views while maintaining the image quality.  相似文献   

4.
Cuijie Zhang  Yinan Wang 《Optimization》2018,67(8):1197-1209
In this paper, we introduce a contraction algorithm for solving monotone variational inclusion problem. To reach this goal, our main iterative algorithm combine Dong’s projection and contraction algorithm with resolvent operator. Under suitable assumptions, we prove that the sequence generated by our main iterative algorithm converges weakly to the solution of the considered problem. Finally, we give two numerical examples to verify the feasibility of our main algorithm.  相似文献   

5.
We introduce a penalty term-based splitting algorithm with inertial effects designed for solving monotone inclusion problems involving the sum of maximally monotone operators and the convex normal cone to the (nonempty) set of zeros of a monotone and Lipschitz continuous operator. We show weak ergodic convergence of the generated sequence of iterates to a solution of the monotone inclusion problem, provided a condition expressed via the Fitzpatrick function of the operator describing the underlying set of the normal cone is verified. Under strong monotonicity assumptions we can even show strong nonergodic convergence of the iterates. This approach constitutes the starting point for investigating from a similar perspective monotone inclusion problems involving linear compositions of parallel-sum operators and, further, for the minimization of a complexly structured convex objective function subject to the set of minima of another convex and differentiable function.  相似文献   

6.
In this paper, based on inertial and Tseng''s ideas, we propose two projection-based algorithms to solve a monotone inclusion problem in infinite dimensional Hilbert spaces. Solution theorems of strong convergence are obtained under the certain conditions. Some numerical experiments are presented to illustrate that our algorithms are efficient than the existing results.  相似文献   

7.
The paper provides a descent algorithm for solving certain monotone variational inequalities and shows how this algorithm may be used for solving certain monotone complementarity problems. Convergence is proved under natural monotonicity and smoothness conditions; neither symmetry nor strict monotonicity is required.The author is grateful to two anonymous referees for their very valuable comments on an earlier draft of this paper.  相似文献   

8.
《Optimization》2012,61(10):1701-1716
ABSTRACT

In this paper, a hybrid proximal algorithm with inertial effect is introduced to solve a split variational inclusion problem in real Hilbert spaces. Under mild conditions on the parameters, we establish weak convergence results for the proposed algorithm. Unlike the earlier iterative methods, we do not impose any conditions on the sequence generated by the proposed algorithm. Also, we extend our results to find a common solution of a split variational inclusion problem and a fixed-point problem. Finally, some numerical examples are given to discuss the convergence and superiority of the proposed iterative methods.  相似文献   

9.
选择合适的核函数对设计求解线性规划与半正定规划的原始对偶内点算法以及复杂性分析都十分重要.Bai等针对线性规划提出三种核函数,并给出求解线性规划的大步迭代复杂界,但未给出数值算例验证算法的实际效果(Bai Y Q,Xie W,Zhang J.New parameterized kernel functions for linear optimization.J Global Optim,2012.DOI 10.1007/s10898-012-9934-z).基于这三种核函数设计了新的求解半正定规划问题的原始对内点算法.进一步分析了算法关于大步方法的计算复杂性界,同时通过数值算例验证了算法的有效性和核函数所带参数对计算复杂性的影响.  相似文献   

10.
In this paper, a new smoothing function is given by smoothing the symmetric perturbed Fischer-Burmeister function. Based on this function, a smoothing Newton algorithm is proposed for solving the monotone second-order cone complementarity problems. The global and local quadratic convergence results of the algorithm are established under suitable assumptions. The theory of Euclidean Jordan algebras is a basic tool which is extensively used in our analysis. Numerical results indicate that the proposed algorithm is effective.  相似文献   

11.
In this paper, we analyse the convergence rate of the sequence of objective function values of a primal-dual proximal-point algorithm recently introduced in the literature for solving a primal convex optimization problem having as objective the sum of linearly composed infimal convolutions, nonsmooth and smooth convex functions and its Fenchel-type dual one. The theoretical part is illustrated by numerical experiments in image processing.  相似文献   

12.
In this paper, we propose an inertial algorithm for solving split equality of monotone inclusion and f $$ f $$-fixed point of Bregman relatively f $$ f $$-nonexpansive mapping problems in reflexive real Banach spaces. Using the Bregman distance function, we prove a strong convergence theorem for the algorithm produced by the method in real reflexive Banach spaces. In addition, we provide some applications of our method and give numerical results to demonstrate the applicability and efficiency of the proposed method.  相似文献   

13.
This paper presents a globally convergent multiplier method which utilizes an explicit formula for the multiplier. The algorithm solves finite dimensional optimization problems with equality constraints. A unique feature of the algorithm is that it automatically calculates a value for the penalty coefficient, which, under certain assumptions, leads to global convergence.Research sponsored by the Joint Services Electronics Program, Contract F44620-71-C-0087 and the National Science Foundation, Grant GK-37672.  相似文献   

14.
In this study, we propose an algorithm for solving a minimax problem over a polyhedral set defined in terms of a system of linear inequalities. At each iteration a direction is found by solving a quadratic programming problem and then a suitable step size along that direction is taken through an extension of Armijo's approximate line search technique. We show that each accumulation point is a Kuhn-Tucker solution and give a condition that guarantees convergence of the whole sequence of iterations. Through the use of an exact penalty function, the algorithm can be used for solving constrained nonlinear programming. In this case, our algorithm resembles that of Han, but differs from it both in the direction-finding and the line search steps.  相似文献   

15.
An algorithm for minimization of functions of many variables, subject possibly to linear constraints on the variables, is described. In it a subproblem is solved in which a quadratic approximation is made to the object function and minimized over a region in which the approximation is valid. A strategy for deciding when this region should be expanded or contracted is given. The quadratic approximation involves estimating the hessian of the object function by a matrix which is updated at each iteration by a formula recently reported by Powell [6]. This formula enables convergence of the algorithm from any feasible point to be proved. Use of such an approximation, as against using exact second derivatives, also enables a reduction of about 60% to be made in the number of operations to solve the subproblem. Numerical evidence is reported showing that the algorithm is efficient in the number of function evaluations required to solve well known test problems.This paper was presented at the 7th International Mathematical Programming Symposium 1970, The Hague, The Netherlands.  相似文献   

16.
In this work, an improved SQP method is proposed for solving minimax problems, and a new method with small computational cost is proposed to avoid the Maratos effect. In addition, its global and superlinear convergence are obtained under some suitable conditions.  相似文献   

17.
There is increasing motivation for solving time-dependent differential equations with iterative splitting schemes. While Magnus expansion has been intensively studied and widely applied for solving explicitly time-dependent problems, the combination with iterative splitting schemes can open up new areas. The main problems with the Magnus expansion are the exponential character and the difficulty of deriving practical higher order algorithms. An alternative method is based on iterative splitting methods that take into account a temporally inhomogeneous equation. In this work, we show that the ideas derived from the iterative splitting methods can be used to solve time-dependent problems. Examples are discussed.  相似文献   

18.
We present the first polynomial-time approximation algorithm for finding a minimum-cost subgraph having at least a specified number of edges in each cut. This class of problems includes, among others, the generalized Steiner network problem, also called the survivable network design problem. Ifk is the maximum cut requirement of the problem, our solution comes within a factor of 2k of optimal. Our algorithm is primal-dual and shows the importance of this technique in designing approximation algorithms.Research supported by an NSF Graduate Fellowship, DARPA contracts N00014-91-J-1698 and N00014-92-J-1799, and AT&T Bell Laboratories.Research supported in part by Air Force contract F49620-92-J-0125 and DARPA contract N00014-92-J-1799.Part of this work was done while the author was visiting AT&T Bell Laboratories and Bellcore.  相似文献   

19.
In this paper we present a lower bound for the capacitated warehouse location problem based upon lagrangean relaxation of a mixed-integer formulation of the problem. Feasible solution exclusion constraints are used together with problem reduction tests derived from both the original problem and the lagrangean relaxation.By incorporating the lower bound and the reduction tests into a tree search procedure we are able to solve problems involving up to 500 potential warehouse locations and 1000 customers.  相似文献   

20.
In this paper, we introduce an inertial subgradient-type algorithm to find the common element of fixed point set of a family of nonexpansive mappings and the solution set of the single-valued variational inequality problem. Under the assumption that the mapping is monotone and Lipschitz continuous, we show that the sequence generated by our algorithm converges strongly to some common element of the fixed set and the solution set. Moreover, preliminary numerical experiments are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号