首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel cationic hydrophilic interaction monolithic stationary phase based on the copolymerization of 2-(methacryloyloxy)ethyltrimethylammonium methyl sulfate (META) and pentaerythritol triacrylate (PETA) in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was designed for performing capillary liquid chromatography. While META functioned as both the ion-exchange sites and polar ligand provider, the PETA, a trivinyl monomer, was introduced as cross-linker. The monolithic stationary phases with different properties were easily prepared by adjusting the amount of META in the polymerization solution as well as the composition of the porogenic solvent. The hydrophilicity of the monolith increased with increasing content of META in the polymerization mixture. A typical hydrophilic interaction chromatography mechanism was observed when the content of acetonitrile in the mobile phase was higher than 20%. The poly(META-co-PETA) monolith showed very good selectivity for neutral, basic and acidic polar analytes. For polar-charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Peak tailing of basic compounds was avoided and the efficient separation of benzoic acid derivatives was obtained.  相似文献   

2.
A monolithic capillary column with a mixed‐mode stationary phase of reversed‐phase/hydrophilic interaction chromatography was prepared for capillary liquid chromatography. The monolith was created by an in‐situ copolymerization of a homemade monomer N,N‐dimethyl‐N‐acryloxyundecyl‐N‐(3‐sulfopropyl) ammonium betaine and a crosslinker pentaerythritol triacrylate in a binary porogen agent consisting of methanol and isopropanol. The functional monomer was designed to have a highly polar zwitterionic sulfobetaine terminal group and a hydrophobic long alkyl chain moiety. The composition of the polymerization solution was systematically optimized to permit the best column performance. The columns were evaluated by using acidic, basic, polar neutral analytes, as well as a set of alkylbenzenes and Triton X100. Very good separations were obtained on the column with the mixed‐mode stationary phase. It was demonstrated that the mixed‐mode stationary phase displayed typic dual retention mechanisms of reversed‐phase/hydrophilic interaction liquid chromatography depending on the content of acetonitrile in the mobile phase. The method for column preparation is reproducible.  相似文献   

3.
通过十八烷基胺的氨基与二醛微晶纤维素的醛基共价键合,制备了基于二醛微晶纤维素(DMCC)官能化C18的新型反相/亲水色谱固定相(C18-DMCC/SiO2),该色谱固定相被用于反相色谱(RPLC)和亲水相互作用色谱(HILIC)模式。C18-DMCC/SiO2色谱柱展现了良好的疏水选择性和芳香选择性,在反相色谱模式下可分离烷基苯和多环芳烃(PAHs)。苯胺类、酚类和糖苷类等极性化合物被用于评估该色谱柱在反相色谱模式下的极性选择性,商品C18柱作对照柱,色谱评价结果令人满意。核酸碱基被用于评估C18-DMCC/SiO2色谱柱的亲水色谱性能。通过考察有机溶剂含量对分析物保留的影响,发现该新型色谱固定相具有反相/亲水色谱的典型特征。  相似文献   

4.
Dong J  Ou J  Dong X  Wu R  Ye M  Zou H 《Journal of separation science》2007,30(17):2986-2992
A CEC monolithic column with strong cation-exchange (SCX) stationary phase based on hydrophilic monomers was prepared by in situ polymerization of acrylamide, methylenebisacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a complete organic binary porogenic solvent consisting of DMSO and dodecanol. The sulfonic groups provided by the monomer AMPS on the surface of the stationary phase generate an EOF from anode to cathode, and serve as an SCX stationary phase at the same time. The monolithic stationary phase exhibited normal-phase chromatographic behavior for neutral analytes. For charged analytes, electrostatic interaction/repulsion with the monolith was observed. The strong SCX monolithic column has been successfully employed in the electrochromatographic separation of basic drugs, peptides, and alkaloids extracted from natural products.  相似文献   

5.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

6.
Retention prediction models for reversed-phase liquid chromatography (RPLC) have been extensively studied owing to the fact that RPLC remains the most widely used chromatographic technique especially in the field of pharmaceutical and biomedical analyses. However, RPLC is not always the method of choice for the analysis of some compounds that have high polarity. Hydrophilic interaction chromatography (HILIC) has been gaining interest in the last few years as an alternative option to RPLC for the analysis of polar and hydrophilic analytes. HILIC is a variant of normal-phase liquid chromatography, but utilizes water in a water-miscible organic solvent as the eluent in conjunction with a hydrophilic stationary phase. The present review aims to summarize recent contributions on the development of retention prediction models for a group of basic analytes, namely, the adrenoreceptor agonists and antagonists, on different polar stationary phases. The use of multiple linear regression and artificial neural networks in model building is highlighted.  相似文献   

7.
吕倩楠 《色谱》2017,35(9):927-933
亲水/反相混合模式色谱应用广泛,但pH使用范围有限,不利于碱性药物的分离。该工作利用巯基-烯基点击化学合成了单分散多孔的半胱氨酸改性乙烯基功能化聚甲基倍半硅氧烷(C-V-PMSQ)微球。元素分析表明半胱氨酸成功键合在微球表面。C-V-PMSQ微球为介孔结构,单分散性好且具有优良的化学稳定性。以几种常见的核苷和核酸碱基作为测试样品,考察其色谱保留行为,溶质的保留因子随流动相中水相含量的变化呈现典型的U型曲线,表明C-V-PMSQ固定相具有亲水/反相的双重保留特征。使用该固定相可以分离苯的同系物及一系列亲水性与疏水性化合物。另外在高碱性流动相条件下利用亲水和反相模式成功分离了中药苦参中的3种主要活性成分,表明它在分离碱性药物方面具有较大的优势。  相似文献   

8.
Novel pH-responsive polymer-grafted silica was successfully synthesized through the radical "grafting from" polymerization on azo initiator-immobilized silica. The immobilization of azo initiator onto the silica surface was achieved by the reaction of surface amino groups with 4,4'-azobis(4-cyanovaleric acid chloride). The polymer-grafted silica was prepared by stirring suspension of the azo initiator-immobilized silica in anhydrous dioxane containing acrylic acid (AAc) and butyl acrylate (BA). The resulting polymer-grafted silica was demonstrated to be pH responsive to hydrophobic/hydrophilic property by reversed-phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC). In RPLC mode, the retention of aromatic compounds decreased with the increase in the pH of mobile phase. However, the opposite result was obtained in HILIC mode; the retention of soybean isoflavones was stronger with the mobile phase at higher pH. Finally, the separations of sulfonamides and soybean isoflavones were carried out in RPLC mode and the separation of some nucleotides was achieved in HILIC mode.  相似文献   

9.
Wang  Liang  Wu  Minghuo  Wang  Qixue  Zhan  Jingjing  Chen  Hongbo 《Chromatographia》2016,79(19):1263-1269

Polyethylenimine (PEI) and 2,4,6,8-tetramethyl-2,4,6,8-tetrakis(propyl glycidyl ether)cyclotetrasiloxane (POSS–epoxy) were used as precursors for the preparation of organic-silica hybrid monolithic columns (PEI–POSS monolith) via epoxy–amine ring-opening polymerization (ROP). The high density of amine groups in PEI provides rich chromatographic interaction sites for the polar or acidic analytes in hydrophilic interaction (HILIC) and weak anion exchange (WAX) mechanisms. The column preparation conditions, such as the porogens, solvent and reaction temperature, were systematically investigated according to the morphology, permeability and column efficiency. The separation mechanisms of HILIC and WAX were evaluated with neutral polar compounds and halogen benzoic acids. Owing to the existence of reactive amine groups on the matrix surface, the PEI–POSS monolith is also an ideal starting material for the preparation of HILIC or strong anionic exchange (SAX) stationary phases by modification. The modification of PEI–POSS monoliths with iodomethane or bromoacetic acid via the nucleophilic substitution reaction could achieve the retention mechanisms of SAX or zwitterionic HILIC, respectively.

  相似文献   

10.
徐雪峰  沈爱金  郭志谋  梁鑫淼 《色谱》2013,31(3):185-190
基于巯基硅胶与单取代-6A-烯丙氨基-β-环糊精的巯基-烯点击化学反应,制备了β-环糊精(Click TE-CD)共价键合固定相。元素分析结果表明β-环糊精被成功键合到硅胶表面。以黄酮苷类化合物为模型,考察了Click TE-CD固定相在亲水、反相和超临界流体色谱等分离模式下的色谱保留行为。黄酮苷类化合物保留时间随流动相中乙腈含量的变化呈现典型的U型曲线,表明Click TE-CD固定相具有亲水/反相的双重保留特性。应用几何学方法测得Click TE-CD固定相在反相/亲水、亲水/超临界、反相/超临界混合模式下的正交性分别为69.8%、50.8%、50.8%。对比复杂中药样品降香提取物在反相、亲水、超临界等模式下的分离情况,结果表明Click TE-CD固定相在分离中药复杂样品方面具有极大潜力,可以在一根色谱柱上通过分离模式的改变,实现二维液相色谱的分离。Click TE-CD固定相不同分离模式的分离性能和较好的正交性表明该固定相具有在液相色谱方法发展和二维液相色谱分离方面应用的潜力。  相似文献   

11.
成晓东  冯钰锜 《色谱》2015,33(9):917-921
利用巯基与乙烯基的"点击化学"反应合成了一种新型含多羟基的硅烷偶联剂,再将其与硅胶反应制得含多羟基的亲水固定相。经过元素分析表征证明多羟基官能团已成功键合到硅胶表面。采用一系列不同性质的标准物质考察了亲水色谱模式下固定相的溶质保留机理。由于固定相结构中既具有极性多羟基官能团,也有短的疏水碳链,因此固定相兼具疏水性与亲水性。将此固定相成功应用于亲水与反相色谱两种模式,并对比了两种模式下流速对柱效的影响。最后将固定相应用于烷基苯、水溶性维生素以及核苷的分离中,取得了较好的分离效果,证明了固定相良好的应用前景。  相似文献   

12.
A polar and neutral polymethacrylate-based monolithic column was evaluated as a hydrophilic interaction capillary electrochromatography (HI-CEC) stationary phase with small polar–neutral or charged solutes. The polar sites on the surface of the monolithic solid phase responsible for hydrophilic interactions were provided from the hydroxy and ester groups on the surface of the monolithic stationary phase. These polar functionalities also attract ions from the mobile phase and impart the monolithic solid phase with a given zeta potential to generate electro-osmotic flow (EOF). The monolith was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate (HEMA) and a polar cross-linker with hydroxy group, pentaerythritol triacrylate (PETA), in the presence of a binary porogenic solvent consisting cyclohexanol and dodecanol. A typical HI-CEC mechanism was observed on the neutral polar stationary phase for both neutral and charged analytes. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of HEMA in the polymerization solution as well as the composition of the porogenic solvent. The monoliths were tested in the pCEC mode. The resulting monoliths had different characteristics of hydrophilicity, column permeability, and efficiency. The effects of pH, salt concentration, and organic solvent content on the EOF velocity and the separation of nucleic acids and nucleosides on the optimized monolithic column were investigated. The optimized monolithic column resulted in good separation and with greater than 140,000 theoretical plates/m for pCEC.  相似文献   

13.
亲水作用色谱是一种新型的色谱分离模式.此类色谱模式集反相色谱的经济廉价与正相色谱的优点于一体,有效补充了反相色谱的不足.简单介绍实验室中合成的新型亲水色谱固定相.  相似文献   

14.
In this work, a poly-l-lysine-grafted stationary phase was synthesized by polymerization of N-carboxyanhydride of l-lysine initiated by 3-aminopropylated silica. The resulting material was characterized by FT-IR spectra, elemental analysis and thermogravimetric analysis, which clearly indicated that the new phase had been prepared successfully. The retention of polar solutes depending on acetonitrile content in mobile phase exhibited ??U-shaped?? curves, which was an indication of hydrophilic interaction liquid chromatography (HILIC)/reversed-phase liquid chromatography (RPLC) mixed-mode retention behavior. The retention mechanisms in HILIC and RPLC modes also were investigated. Phenol compounds, aniline compounds and hydrophilic compounds were separated in RPLC or HILIC mode on the new stationary phase, respectively. This result shows that the new phase could be used for both RPLC and HILIC applications, providing greater flexibility for real sample analysis.  相似文献   

15.
Wu R  Zou H  Ye M  Lei Z  Ni J 《Electrophoresis》2001,22(3):544-551
A mode of capillary electrochromatography (CEC), based on the dynamical adsorption of surfactants on the uncharged monolithic stationary phases has been developed. The monolithic stationary phase, obtained by the in situ polymerization of butyl methacrylate with ethylene dimethacrylate, was dynamically modified with an ionic surfactant such as the long-chain quaternary ammonium salt of cetyltrimethylammonium bromide (CTAB) and long-chain sodium sulfate of sodium dodecyl sulfate (SDS). The ionic surfactant was adsorbed on the surface of polymeric monolith by hydrophobic interaction, and the ionic groups used to generate the electroosmotic flow (EOF). The electroosmotic mobility through these capillary columns increased with increasing the content of ionic surfactants in the mobile phase. In this way, the synthesis of the monolithic stationary phase with binary monomers can be controlled more easily than that with ternary monomers, one of which should be an ionic monomer to generate EOF. Furthermore, it is more convenient to change the direction and magnitude of EOF by changing the concentration of cationic or anionic surfactants in this system. An efficiency of monolithic capillary columns with more than 140000 plates per meter for neutral compounds has been obtained, and the relative standard deviations observed for to and retention factors of neutral solutes were about 0.22% and less than 0.56% for ten consecutive runs, respectively. Effects of mobile phase composition on the EOF of the column and the retention values of the neutral solutes were investigated. Simultaneous separation of basic, neutral and acidic compounds has been achieved.  相似文献   

16.
A novel porous zwitterionic monolith was prepared by thermal co-polymerisation of 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol dimethacrylate (EDMA) within 100 μm I.D. capillaries. Mercury intrusion porosimetry, scanning electron microscopy (SEM), micro-HPLC (μ-HPLC), elemental analysis and ζ-potential analysis were used to evaluate the monolithic structure. No evidence of swelling or shrinking of the monolith in different polarity solvents was observed. A typical hydrophilic liquid chromatography (HILIC) mechanism was observed at high organic solvent content (acetonitrile >60%). The phosphorylcholine (PC) functionality has both a positively charged quaternary ammonium and a negatively charged phosphate group. For charged analytes, a weak electrostatic interaction was also observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(MPC-co-EDMA) monolithic column. The optimised poly(MPC-co-EDMA) monolith showed very good selectivities for a range of polar test analytes, especially small peptides. This might be ascribed to the good biocompatibility of PC functionality. At low organic solvent content, baseline separation was also observed for a test mixture of seven alkylphenones by a reversed-phase separation mechanism.  相似文献   

17.
Li Y  Feng Y  Chen T  Zhang H 《Journal of chromatography. A》2011,1218(35):5987-5994
An imidazoline was prepared by solvent-free microwave-assisted organic synthesis and immobilized on porous silica particles by polymerization. The resulting material was composed of both hydrophobic alkyl ester chains and hydrophilic imidazoline rings, which gave it both hydrophilic interaction and reversed-phase characteristics. The titration curve suggests that the new material has buffering capacity and acquires increasing positive charge over the pH range 9-4, and is "zwitterionic" in the upper part of this pH range. Through investigating the effect of column temperature, the water content, pH and ion strength of mobile phase on the retention time of polar compounds in highly organic eluents, it was found that the new material could be used as a hydrophilic interaction liquid chromatography (HILIC) stationary phase which involved a complex retention process consisting of partitioning, surface adsorption and electrostatic interactions. In addition, the retention behavior of aromatic compounds in different mobile phase conditions was also studied, which showed the new material mainly exhibited a partitioning mechanism in the reversed-phase liquid chromatography (RPLC) mode. The separation of six water-soluble vitamins and five aromatic compounds were achieved by using the new material in the HILIC and RPLC modes, respectively.  相似文献   

18.
The goal of this study was to compare the performance of three separation techniques for the analysis of 57 hydrophilic compounds. RPLC, hydrophilic interaction liquid chromatography (HILIC) and subcritical fluid chromatography (SFC) were tested. The comparison was based on the retention, selectivity, peak shape (asymmetry and peak width) and MS sensitivity. As expected, RPLC had some obvious limitations for such classes of compounds, and on average the %ACN required to elute these hydrophilic substances was 4, 7, and 11% ACN at pH 3, 6, and 9, respectively. However, a hybrid polar‐embedded C18 phase with an appropriate mobile phase could represent a viable strategy for hydrophilic basic compounds with log D greater than –2 on average. HILIC and SFC were found to be more appropriate for analyzing a large majority of these hydrophilic analytes (~60 and 70% of compounds eluted during the gradient in HILIC and SFC), while maintaining good MS sensitivity. Finally, this work demonstrated the complementarity of the three analytical techniques and showed that the selection of a suitable strategy should mostly be based on physicochemical properties of the analytes (pKa, log D, H‐bonding capability, etc.).  相似文献   

19.
Lin J  Huang G  Lin X  Xie Z 《Electrophoresis》2008,29(19):4055-4065
A novel porous polymethacrylate-based monolithic column by in situ copolymerization of 3-sulfopropyl methacrylate (SPMA) and pentaerythritol triacrylate in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was prepared. The monolith possessed in their structures bonded sulfonate groups and hydroxyl groups and was evaluated as a hydrophilic interaction and strong cation-exchange stationary phases in capillary liquid chromatography (cLC) and pressure-assisted CEC using small polar neutral and charged solutes. While the SPMA was introduced as multifunctional monomer, the pentaerythritol triacrylate was used to replace ethylene glycol dimethacrylate as cross-linker with much more hydrophilicity due to a hydroxyl sub-layer. The different characterization of monolithic stationary phases were specially designed and easily prepared by altering the amount of SPMA in the polymerization solution as well as the composition of the porogenic solvent for cLC and pressure-assisted CEC. The resulting monolith showed the different trends about the effect of the permeabilities on efficiency in the pressure-assisted CEC and cLC modes. A typical hydrophilic interaction chromatography mechanism was observed at higher organic solvent content (ACN%>70%) for polar neutral analytes. For polar charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Therefore, for charged analytes, selectivity can be readily manipulated by changing the composition of the mobile phase (e.g., pH, ionic strength and organic modifier). With the optimized monolithic column, high plate counts reaching greater than 170 000 plates/m for pressure-assisted CEC and 105 000 plates/m for cLC were easily obtained, respectively.  相似文献   

20.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号