首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
A selective extraction technique based on the combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction for triazine herbicides in food samples was developed. Simazine, atrazine, prometon, terbumeton, terbuthylazine and prometryn were extracted from aqueous food samples into a hydrophobic polypropylene membrane bag containing 1000μL of toluene as the acceptor phase along with 100mg of MIP particles. In the acceptor phase, the compounds were re-extracted onto MIP particles. The extraction technique was optimised for the type of organic acceptor solvent, amount of molecularly imprinted polymers particles in the organic acceptor phase, extraction time and addition of salt. Toluene as the acceptor phase was found to give higher triazine binding onto MIP particles compared to hexane and cyclohexane. Extraction time of 120min and 100mg of MIP were found to be optimum parameters. Addition of salt increased the extraction efficiency for more polar triazines. The selectivity of the technique was demonstrated by extracting spiked cow pea and corn extracts where clean chromatograms were obtained compared to only membrane assisted solvent extraction or only molecularly imprinted solid phase extraction. The study revealed that this combination may be a simple way of selectively extracting compounds in complex samples.  相似文献   

2.
The potential of combination of liquid membranes (microporous membrane liquid–liquid extraction) and molecularly imprinted polymers (MIPs) was performed using 17β‐estradiol (E2) as model compound. The model compound was extracted from aqueous sample through a hydrophobic porous membrane that was impregnated with hexane/ethyl acetate (3:2), which also formed part of the acceptor phase. In the acceptor phase, the compound was bound onto MIP particles that were also part of the organic phase. The potential of such combination was optimised for the type and amount of MIP particles in the organic acceptor phase, the extraction time, and the type of organic acceptor solvent. Ultrasound assisted binding of E2 onto MIP particles was also investigated. MIPs prepared by precipitation polymerization were found to be superior to those prepared by bulk polymerization. Increase in the extraction time and the amount of MIP particles in the acceptor phase led to more E2 binding onto the MIP particles. Hexane/ethyl acetate (3:2) as an organic acceptor was found to give higher E2 binding onto MIP particles compared to toluene, diethyl ether, and hexane. Ultrasound was furthermore found to increase the binding of E2 onto MIP particles. The selectivity of the technique was demonstrated by extracting wastewater and where clean chromatograms were obtained compared to liquid membrane extractions (SLMs) alone.  相似文献   

3.
《Analytical letters》2012,45(4):645-660
Abstract

A novel reproducible solid‐phase microextraction (SPME) coating was prepared on the surface of silanized silica fibers by molecularly imprinted polymerization using prometryn as template molecule. The structure and extraction performance of molecularly imprinted polymer (MIP) coating was studied with the scanning electron microscope and high performance liquid chromatography (HPLC). Specific selectivity was found with the prometryn MIP‐coated fiber to prometry and its structural analogues such as atrazine, simetryn, terbutylazin, ametryn, propazine and terbutryn. In contrast, these triazines could not be selectively extracted by the non‐imprinted polymer fiber or commercial polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), polyacrylate (PA) fibers.  相似文献   

4.
A novel liquid–liquid–solid microextraction (LLSME) technique based on porous membrane-protected molecularly imprinted polymer (MIP)-coated silica fiber has been developed. In this technique, a MIP-coated silica fiber was protected with a length of porous polypropylene hollow fiber membrane which was filled with water-immiscible organic phase. Subsequently the whole device was immersed into aqueous sample for extraction. The LLSME technique was a three-phase microextraction approach. The target analytes were firstly extracted from the aqueous sample through a few microliters of organic phase residing in the pores and lumen of the membrane, and were then finally extracted onto the MIP fiber. A terbutylazine MIP-coated silica fiber was adopted as an example to demonstrate the feasibility of the novel LLSME method. The extraction parameters such as the organic solvent, extraction and desorption time were investigated. Comparison of the LLSME technique was made with molecularly imprinted polymer based solid-phase microextraction (MIP-SPME) and hollow fiber membrane-based liquid-phase microextraction (HF-LPME), respectively. The LLSME, integrating the advantages of high selectivity of MIP-SPME and enrichment and sample cleanup capability of the HF-LPME into a single device, is a promising sample preparation method for complex samples. Moreover, the new technique overcomes the problem of disturbance from water when the MIP-SPME fiber was exposed directly to aqueous samples. Applications to analysis of triazine herbicides in sludge water, watermelon, milk and urine samples were evaluated to access the real sample application of the LLSME method by coupling with high-performance liquid chromatography (HPLC). Low limits of detection (0.006–0.02 μg L−1), satisfactory recoveries and good repeatability for real sample (RSD 1.2–9.6%, n = 5) were obtained. The method was demonstrated to be a fast, selective and sensitive pretreatment method for trace analysis of triazines in complex aqueous samples.  相似文献   

5.
Magnetic nanoparticles have been surface modified by molecular imprinting and evaluated as selective sorbents for the extraction of triazines from environmental waters. The use of propazine as template allowed us to synthesize a selective material able to simultaneously recognize and selective extract not only the template but also several other herbicides of the same family. A magnetic molecularly imprinted‐based dispersive solid‐phase extraction procedure was developed and fully optimized. Magnetic molecularly imprinted polymer particles can be easily collected and separated from liquid solvents and samples with the help of an external magnetic field, avoiding in that way any centrifugation or filtration steps, which represents a remarkable advantage over traditional procedures. Under optimum conditions, selective extraction of several triazines (cyanazine, simazine, atrazine, propazine, and terbutylazine) from environmental water samples was performed prior to final determination by high‐performance liquid chromatography with diode‐array detection. Recoveries for the studied triazines were within the range of 75.2–94.1%, with relative standard deviations lower than 11.3% (= 3). The limits of detection were within 0.16–0.51 µg/L, depending upon the triazine and the type of sample analyzed.  相似文献   

6.
Yuling Hu 《Talanta》2009,79(3):576-1198
In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated.The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample.  相似文献   

7.
An analytical methodology based on a molecularly imprinted solid-phase extraction (MISPE) procedure was developed for the determination of several triazines (atrazine, simazine, desethylatrazine (DEA), desisopropylatrazine (DIA), and propazine) in vegetable samples. A methacrylic acid-based imprinted polymer was prepared by precipitation polymerisation using propazine as template and toluene as porogen. After removal of the template by Soxhlet extraction, the optimum loading, washing, and elution conditions for MISPE of the selected triazines were established. The optimised MISPE procedure was applied to the extraction of the selected triazines in pea, potato, and corn sample extracts and a high degree of clean-up was obtained. However, some remaining interferences, non-specifically and strongly bound to the polymeric matrix, appeared in the chromatogram, preventing quantification of DIA in potatoes and DIA, DEA, and propazine in corn samples. Thus, a new clean-up protocol based on the use of a non-imprinted polymer for removal of these interferences prior to the MISPE step was developed. By following the new two-step MISPE procedure, the matrix compounds were almost completely removed, allowing the determination of all the triazines selected at concentration levels below the established maximum residue limits, making the developed procedure suitable for monitoring these analytes in vegetable samples.  相似文献   

8.
In this work, the preparation and evaluation of water-compatible molecularly imprinted polymers for triazines using 2-hydroxyethyl methacrylate and methacrylic acid as comonomers is described. Four sets of molecularly imprinted and non-imprinted polymers for propazine were prepared at varying monomer molar ratios (from 4:0 to 1:3), and evaluated for the recognition of several triazines directly in aqueous media. The evaluation was performed by loading 1 mL of an aqueous solution containing 500 ng of each selected triazine, washing with 500 μL of acetonitrile, and eluting with 500 μL of methanol followed by 2 × 500 μL of a solution of methanol containing 10% of acetic acid. Final determinations were performed by high-performance liquid chromatography-ultraviolet detection. Improvement in molecular recognition of triazines in water was obtained on those molecularly imprinted polymers incorporating 2-hydroxyethyl methacrylate in 3:1 or 2:2 molar ratios, being the former selected as optimum providing recoveries for propazine up to 80%. A molecularly imprinted solid-phase extraction protocol was developed to ensure that triazines-selective recognition takes place inside selective binding sites in pure water media. Finally, the developed method was successfully applied to the determination of the selected triazines in environmental waters providing limits of detection from 0.16 and the 0.5 μg/L concentration range.  相似文献   

9.
In this work a molecularly imprinted polymer was developed as a selective sorbent for extraction of loratadine (as a model) in complex matrices followed by miniaturized homogeneous liquid–liquid extraction (MHLLE) for the first time. The molecularly imprinted polymer (MIP) which is based on loratadine as the template was synthesized successfully by precipitation polymerization and was used as a selective sorbent. This technique was applied for preconcentration, sample preparation, and determination of loratadine using high performance liquid chromatography-photo diode array detection (HPLC-PDA). Optimization of various parameters affecting molecular imprinted solid phase extraction (MISPE), such as pH of adsorption, composition and volume of eluent, adsorption and desorption times were investigated. Besides, in the subsequent stage (MHLLE) the type and volume of extraction solvent, sodium hydroxide amount, surfactant concentration, and extraction time were investigated and optimized. Under the optimal condition, maximum enrichment capacity and Langmuir constant were 91 mg g−1 and 0.014 L mg−1, respectively. Furthermore, enrichment factor and extraction recovery of MIP-MHLLE method were 30 and 90%, respectively. The LOD of the proposed method was 0.2 μg L−1 and a linear dynamic range of 1–1000 μg L−1 was obtained with correlation coefficient of greater than 0.998. The present method was applied for extraction and determination of loratadine in plasma and urine samples in μg L−1 levels and satisfactory results were achieved (RSD <8% based on three replicate measurements).  相似文献   

10.
Y Wen  L Chen  J Li  Y Ma  S Xu  Z Zhang  Z Niu  J Choo 《Electrophoresis》2012,33(15):2454-2463
A simple and sensitive method for the simultaneous determination of four triazines from soil, strawberry, and tomato samples was developed by selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled to micellar electrokinetic chromatography (MEKC). Using atrazine as template, the synthesized molecularly imprinted polymers (MIPs) were employed as the dispersion sorbent of MSPD to successfully extract atrazine and its analogs of simazine, ametryn, and propazine from the three different real samples, while matrix interferences were effectively eliminated simultaneously under the optimum extraction conditions. Excellent separation was achieved within 7 min by using an optimized buffer system composed of 30 mmol/L ammonium acetate, 20 mmol/L SDS, and 15% ACN at pH 9.45, obtained by orthogonal design. Good linearity was obtained in a range of 0.5-25 μg/g with the correlation coefficients R(2) ≥0.9991 except for strawberry sample within 1-25 μg/g, and limits of detection were between 12.9-31.5 ng/g in all the three samples. The average recoveries of the four triazines at three different spiked levels were ranged from 53.5 to 98.4% with the relative standard deviations of 1.28-4.89%. This method was proved convenient, costeffective, and environmental benign and could be used as an alternative tool to the existing methods for analyzing the residues of triazines in soil, fruit, and vegetable samples.  相似文献   

11.
A semi-covalent imprinted polymer was prepared by precipitation polymerisation using propazine methacrylate as template molecule, ethylene glycol dimethacrylate as cross-linker and toluene as porogen. After removal of propazine by basic hydrolysis of the covalent bond, the optimum loading, washing and elution conditions for the solid-phase extraction of the selected triazines were established. The binding sites present in the polymeric matrix were characterised by fitting the experimental results of several rebinding studies to the Langmuir-Freundlich isotherm. Subsequently, an analytical methodology based on molecularly imprinted solid-phase extraction (MISPE) was developed for the determination of several triazinic herbicides in soil and vegetable samples. Following this procedure, a good degree of clean-up of the sample extracts was easily achieved, allowing the HPLC-UV determination of selected triazines in complex samples at low concentration levels.  相似文献   

12.
In this work, two different surface imprinting formats have been evaluated using thiabendazole (TBZ) as model template. The first format is a thin film of molecularly imprinted polymer (MIP) grafted from preformed silica particles using an immobilized iniferter‐type initiator (inif‐MIP). The second format is molecularly imprinted polymer microspheres with narrow particle size distribution and core‐shell morphology prepared by precipitation polymerization in a two‐step procedure. For the latter format, polymer microspheres (the core particles) were obtained by precipitation polymerization of divinylbenzene‐80 (DVB‐80) in acetonitrile. Thereafter, the core particles were used as seed particles in the synthesis of MIP shells by copolymerization of DVB‐80 and methacrylic acid in the presence of TBZ in a mixed solvent porogen (acetonitrile/toluene). The materials were characterized by elemental microanalysis, nitrogen sorption porosimetry and scanning (and transmission) electron microscopy. Thereafter, the imprinted materials were assessed as stationary phases in liquid chromatography. From this study it can be concluded that grafted MIP beads can be obtained in a simple and direct manner, consuming only a fraction of the reagents used typically to prepare imprinted particles from a monolithic imprinted polymer. Such materials can be used in the development of in‐line molecularly imprinted solid‐phase extraction methods. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1058–1066, 2010  相似文献   

13.
Dispersive liquid–liquid microextraction (DLLME) high-performance liquid chromatography (HPLC) was developed for extraction and determination of triazines from honey. A room temperature ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6.], was used as extraction solvent and Triton X 114 was used as dispersant. A mixture of 175 μL [C6MIM][PF6] and 50 μL 10% Triton X 114 was rapidly injected into the 20 mL honey sample by syringe. After extraction, phase separation was performed by centrifugation and the sedimented phase was analyzed by HPLC. Some experimental parameters, such as type and volume of extraction solvent, concentration of dispersant, pH value of sample solution, salt concentration and extraction time were investigated and optimized. The detection limits for chlortoluron, prometon, propazine, linuron and prebane are 6.92, 5.84, 8.55, 8.59 and 5.31 μg kg−1, respectively. The main advantages of the proposed method are simplicity of operation, low cost, high enrichment factor and extraction solvent volume at microliter level. Honey samples were analyzed by the proposed method and obtained results indicated that the proposed method provides acceptable recoveries and precisions.  相似文献   

14.
Porous molecularly imprinted polymer membranes and polymeric particles   总被引:1,自引:0,他引:1  
Porous free-standing molecularly imprinted polymer membranes were synthesised by the method of in situ polymerisation using the principle of synthesis of interpenetrating polymer networks and tested in solid-phase extraction of triazine herbicides from aqueous solutions. Atrazine-specific MIP membranes were obtained by the UV-initiated co-polymerisation of methacrylic acid, tri(ethylene glycol) dimethacrylate, and oligourethane acrylate in the presence of a template (atrazine). Addition of oligourethane acrylate provided formation of the highly cross-linked MIP in a form of a free-standing 60 μm thick flexible membrane. High water fluxes through the MIP membranes were achieved due to addition of linear polymers (polyethylene glycol Mw 20,000 and polyurethane Mw 40,000) to the initial mixture of monomers before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) have been formed, where the cross-linked polymer was represented by the atrazine-specific molecularly imprinted polymer, while the linear one was represented by polyethylene glycol/polyurethane. Extraction of the linear polymers from the fully formed semi-IPNs resulted in formation of large pores in the membrane structure. At the same time, extraction of the template molecules lead to formation of the sites in the polymeric network, which in shape and arrangement of functional groups are complementary to atrazine. Reference polymeric membranes were prepared from the same mixture of monomers but in the absence of the template. Recognition properties of the MIP membranes were estimated in solid-phase extraction by their ability to selective re-adsorbtion of atrazine from 10−8 to 10−4 M aqueous solutions. The imprinting effect was demonstrated for both types of the MIP membranes and the influence of the type of the linear compound on their recognition properties was estimated. The recognition properties of the MIP membranes were compared to those of the MIP particles of the same composition. Morphology of the MIP membranes was investigated using the SEM microscopy. High fluxes of the developed membranes together with high affinity and adsorption capability make them an attractive alternative to MIP particles in separation processes.  相似文献   

15.
Yuling Hu 《Talanta》2010,82(2):464-4294
A novel stir bar coated with molecularly imprinted polymer (MIP) as selective extraction phase for sorptive extraction of triazine herbicides was developed. The stir bar was prepared by chemically bonding the MIP to the glass bar to improve its stability. A homogeneous and porous structure was observed on the stir bar surface. Extraction performance shows that the MIP-coated stir bar has stronger affinity to the template molecule terbuthylazine as compared with that of the reference stir bar without addition of template. Owning to the shape and structural compatibility, the obtained stir bar also demonstrated specific selectivity to the structural related-compounds of nine triazines, and thus can be applied to simultaneous determination of these compounds from complex samples coupled with high performance liquid chromatography. Four complex samples with different matrix, including rice, apple, lettuce and soil were used to evaluate this proposed method. The limits of detection obtained are in the range of 0.04-0.12 μg L−1, and the recoveries for the spiked rice, apple, lettuce and soil samples were 80.8-107.7%, 80.6-107.8%, 72.0-109.8% and 89.0-114.8% with RSD from 1.2 to 7.9%, respectively. Moreover, this MIP-coated stir bar was firm, durable and can be prepared simply and reproducibly. The developed coating method would be useful to prepare a range of selective stir bars in order to extend the applicability of stir bar sorptive extraction (SBSE) in complex sample analysis.  相似文献   

16.
Based on a special homemade interface, the molecularly imprinted stir bar sorptive extraction was coupled to high performance liquid chromatography for the online desorption and analysis. During desorption, the analytes desorbed from stir bar were delivered to a sample loop and then was introduced into liquid chromatography for further analysis. The online desorption and introduction processes were real‐time monitored by the ultraviolet detector of the liquid chromatography system. In this way, the method sensitivity and reproducibility was improved for the introduction timing of the desorption solvent with greatest concentration of the target analytes was accurately controlled. To demonstrate the feasibility of the method, terbuthylazine imprinted stir bar was synthesized and used for the analysis of nine triazines in rice. Under the optimized conditions, limits of detection of 0.02–0.11 μg/L and precision within 4.3–7.2% were achieved. The new method was compared with other two traditional offline desorption procedures, i.e. ultrasonic‐assisted desorption and static thermal desorption. The comparison results showed that the proposed method is accurate, precise, fast, and suitable for the trace analysis of complex samples.  相似文献   

17.
The selective preconcentration of estradiol was explored using the recognition ability of a molecularly imprinted polymer (MIP) in the solid phase extraction (SPE) format. Polymeric particles were imprinted with 17β-estradiol using methacrylic acid as functional monomer and divinylbenzene as crosslinker. Binding studies of these polymeric particles towards 17β-estradiol showed selectivity over non-imprinted polymers, using acetonitrile as solvent. The imprinted polymer showed a recovery of 88% for β-estradiol in deionized water and 81% in surface water. The selectivity of the MIP over the non-imprinted polymer was relatively low, only 10% higher recovery. The results indicate that the MIP imprinted with 17β-estradiol does not appear to provide a viable approach to be used in a sample clean-up or enrichment step for the determination of estradiol in aqueous systems.  相似文献   

18.
《Analytical letters》2012,45(8):1245-1256
A comparison between molecularly imprinted solid phase extraction (MISPE) and liquid–liquid extraction (LLE) was performed for cotinine in human urine followed by gas chromatography analysis. The molecularly imprinted polymer (MIP) was synthesized via bulk methodology employing cotinine, methacrylic acid, and ethylene glycol dimethacrylate as template, functional monomer, and cross-linker, respectively. Both methods were validated with good precision and accuracy. The LLE method (limit of quantification = 10 nanograms per milliliter) was slightly more sensitive than the MISPE (limit of quantification = 15 nanograms per milliliter) procedure, but both methods were able to determine cotinine at typical concentrations in urine. An important advantage of the molecularly imprinted polymer approach was its ability to be reused up to at least 100 times. Other advantages of the MISPE include simple manipulation, low solvent consumption, and low worker exposure.  相似文献   

19.
An on-line supported liquid membrane-piezoelectric detection system, based on a molecularly imprinted polymer (SLM-QCM-MIP) manifold, has been developed and applied to the quantitative determination of vanillin in food samples. The analyte is extracted from a donor phase into the hydrophobic membrane, and then back extracted into a second aqueous phase used as the acceptor solution. The quantification of vanillin was performed using a quartz crystal microbalance modified with a molecularly imprinted polymer (MIP). The method shows a linear range between 5 and 65 μM, with a relative standard deviation of ±4.8% (at 5 μM). The method was validated by analysing food samples and comparing the results with an SLM based on spectrophotometric quantification.  相似文献   

20.
A novel technique that integrates extraction and clean‐up into a single step format is reported as part of the search for new sample preparation techniques in the analysis of persistent organic pollutants from complex samples. This was achieved by combining the extraction efficiency of the Soxhlet extractor, the selectivity of a size exclusion membrane and the specificity of a molecularly imprinted polymer for the extraction of polycyclic aromatic hydrocarbons from wastewater sludge followed by quantitation using gas chromatography with time‐of‐flight mass spectrometry. The approach is described as the Soxhlet extraction membrane‐assisted solvent extraction molecularly imprinted polymer technique. This technique was optimised for various parameters such as extraction solvent, reflux time and membrane acceptor phase. The applicability of the developed technique was optimised using a wastewater sludge certified reference material and then tested on real wastewater sludge samples. The method detection limits ranged from 0.14 to 12.86 ng/g with relative standard deviation values for the extraction of the 16 US‐EPA priority polycyclic aromatic hydrocarbons from wastewater sludge samples ranging from 0.78 to 18%. The extraction process was therefore reproducible and showed remarkable selectivity. The developed technique is a promising prospect that can be applied in the analysis of organic pollutants from complex solid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号