首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li Zaijun  Wang Zhongyun  Fang Yinjun 《Talanta》2010,80(5):1632-1027
The paper describes a sensitive and highly stable label-free electrochemical impedance immunosensor for the determination of aflatoxin B1 (AFB1), which is based on the formation of silica gel-ionic liquid biocompatible film on the glassy carbon electrode. The electrochemical performances of the sensor were investigated by electrochemical impedance spectroscopy using a Fe(CN)63−/4− phosphate buffer solution as base solution for test. As new ionic liquid, 1-amyl-2,3-dimethylimidazolium hexafluorophosphate, offers a very biocompatible microenvironment for AFB1 antibody, the sensor exhibits good repeatability (RSD = 1.2%), sensitive electrochemical impedance response to AFB1 in the range of 0.1-10 ng ml−1 and lowers the detection limit of AFB1 (0.01 ng ml−1). The electron-transfer resistance change of the sensor after and before incubation with AFB1 of 2.0 ng ml−1 can retain 95% over a 180-day storage period at 4 °C. The results present a remarkable improvement of sensitivity (2-fold) and long-term stability (190-fold) when compared to classical silica gel sensor. Moreover, proposed sensor has a high selectivity to AFB1 alone with no significant response to AFB2, AFG1, AFG2 and AFM1 as single substrates, it has been successfully applied to the determination of trace AFB1 in bee pollen samples with a spiked recovery in the range of 96.0-102.5%.  相似文献   

2.
A single-step, environmentally friendly sample treatment was developed and used in combination with liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the quantitation of hexabromocyclododecane (HBCD) stereoisomers in fish. It was based on the microextraction of the stereoisomers with a supramolecular solvent (SUPRAS) made up of reverse aggregates of decanoic acid (DeA). The procedure involved the stirring of the fish sample (750 mg) with 600 μL of SUPRAS for five minutes, subsequent centrifugation for extract separation from matrix components and direct analysis of the extract after dilution 1:1 with methanol. Individual enantiomers of α-, β- and γ-HBCD were separated on a chiral stationary phase of β-cyclodextrin and quantified by monitoring of the [M−H] → Br transition at m/z 640.9→80.9. Driving forces for the microextraction of HBCD in the SUPRAS involved both dispersion and dipole–dipole interactions. Quantitation limits for the determination of individual HBCD enantiomers in hake, cod, sole, panga, whiting and sea bass were within the intervals 0.5–3.4 ng g−1, 0.9–2.5 ng g−1, 0.6–1.4 ng g−1, 1.0–5.6 ng g−1, 0.8–1.3 ng g−1 and 0.5–3.5 ng g−1, respectively. Recoveries for fish samples fortified at the ng g−1 level ranged between 87 and 114% with relative standard deviations from 1 to 10%. The sample treatment proposed greatly simplifies current procedures for extraction of HBCD stereoisomers and is a useful tool for the development of a large scale database for their presence in fish.  相似文献   

3.
In this work, an isotope dilution method for the determination, in agricultural and industrial soil samples, of tetrabromobisphenol-A, tetrachlorobisphenol-A and bisphenol-A by gas chromatography–mass spectrometry was developed. The compounds were extracted from soil by sonication assisted extraction in small columns (SAESC) with a low volume of ethyl acetate as extraction solvent. For dirty soil samples, such as industrial soils, a simultaneous clean-up on an acidified Florisil–anhydrous sodium sulfate mixture was carried out to remove interferences. After extraction, solvent was evaporated and analytes were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC–MS–SIM), using 13C12 labeled compounds as internal standards. Recoveries from spiked samples were between 88% and 108% and the estimated limits of detection (S/N = 3) varied from 30 pg g−1 to 90 pg g−1. The response obtained with this method was linear over the range assayed, 5–300 ng ml−1, with correlation coefficients equal or higher than 0.999. The validated method was used to investigate the levels of these phenolic compounds in soil samples collected from different locations in Spain. Bisphenol-A was detected in all samples at concentrations from 0.7 ng g−1 to 4.6 ng g−1 in agricultural soils and from 1.1 ng g−1 to 44.5 ng g−1 in industrial soils. Tetrabromobisphenol-A was found in various soil samples at levels in the range of 3.4–32.2 ng g−1 in industrial soils and at 0.3 ng g−1 in one agricultural soil, whereas tetrachlorobisphenol-A was not detected.  相似文献   

4.
Tetrabromobisphenol A is the most widely used brominated flame retardant. A sensitive and selective enzyme-linked immunosorbent assay (ELISA) for the detection of tetrabromobisphenol A was developed. The limit of detection and the inhibition half-maximum concentration of tetrabromobisphenol A in phosphate buffered saline with 10% methanol were 0.05 and 0.87 ng mL−1, respectively. Cross-reactivity values of the ELISA with a set of important brominated flame retardants including tetrabromobisphenol A-bis(2,3-dibromopropylether), 2,2′,6,6′-tetrabromobisphenol A diallyl ether, hexabromocyclododecane, 1,2-bis(pentabromodiphenyl) ethane, 1,2-bis(2,4,6 tribromophenoxy) ethane, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate, and polybrominated diphenyl ethers were <0.05%. Concentrations of tetrabromobisphenol A determined by ELISA in the soils from farmlands, the soils from an e-waste recycling site, and the sediments of a canal were in the range of non-detectable–5.6 ng g−1, 26–104 ng g−1 and 0.3–22 ng g−1 dw, respectively, indicating the ubiquitous pollution of tetrabromobisphenol A. The results of this assay for 16 real world samples agreed well with those of the liquid chromatography–tandem mass spectrometry method, indicating this ELISA is suitable for screening of tetrabromobisphenol A in environmental matrices.  相似文献   

5.
Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m2 g−1) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g−1 and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g−1 dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g−1 dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%.  相似文献   

6.
In this paper, bamboo charcoals were modified using Fe3O4 nanosheets for the first time. The composites, as a novel solid-phase microextraction (SPME) fiber coating, were used for the extraction of seven polybrominated diphenyl ethers (PBDEs) in environmental water samples. The extraction factors (stirring rate, extraction time, and ionic strength) and desorption factors (desorption time and desorption temperature) of the fibers were systematically investigated and optimized. Under optimum conditions, the linear range was 1–1000 ng L−1. Based on the ratio of chromatographic signal to base line noise (S N−1 = 3), the limits of detection (LODs) can reach 0.25–0.62 ng L−1. The novel method was successful in the analysis of PBDEs in real environmental water samples. The results indicate that bamboo charcoal/Fe3O4 as an SPME coating material coupled with gas chromatography–negative chemical ionization-mass spectrometry is an excellent method for the routine analysis of PBDEs at trace levels in environmental water samples.  相似文献   

7.
The present work describes the development of a sensitive analytical method based on pressurized liquid extraction (PLE) and pre-concentration by solid-phase extraction (SPE), followed by liquid chromatography–electrospray tandem mass spectrometry (LC–ESI-MS/MS) for the determination of seventeen pharmaceuticals in soils and sediments. The method is based on sample homogenisation using Na2–EDTA washed sand and extraction with water at 90 °C. Special emphasis was placed on the optimization of the extraction procedure to develop a green method that reduces, at a maximum, the use of organic solvents in order to eliminate matrix components during the clean-up. The proposed method was linear in a concentration range from 0.3 to 333 ng g−1, with correlation coefficients higher than 0.993. Method detection (MDLs) and quantification (MQLs) limits ranged from 0.1 to 6.8 ng g−1 and from 0.25 to 23 ng g−1, respectively. Absolute recoveries were analyte dependent, varying between 50% and 105% at the MQL level, except for fenofibrate (40%) and diclofenac (34%). The intra-day and inter-day precision was given by RSD values from 0.7% to 7.9% and from 1.6% to 14.5%, respectively. Acetaminophen, carbamazepine, ciprofloxacin, clofibric acid, codeine, diazepam, fenofibrate, metropolol, ofloxacin and propanolol were detected at concentrations from MDL to 35.62 ng g−1 in soils and sediments from marsh areas. Due to the low recoveries, results for fenofibrate and diclofenac can only be considered as semi-quantitative. The method was fully suitable for the other 15 pharmaceuticals.  相似文献   

8.
Coacervative microextraction ultrasound-assisted back-extraction technique (CME-UABE) is proposed for the first time for extracting and preconcentrating organophosphates pesticides (OPPs) from honey samples prior to gas chromatography–mass spectrometry (GC–MS) analysis. The extraction/preconcentration technique is supported on the micellar organized medium based on non-ionic surfactant. To enable coupling the proposed technique with GC, it was required to back extract the analytes into hexane. Several variables including, surfactant type and concentration, equilibration temperature and time, matrix modifiers, pH and buffers nature were studied and optimized over the relative response of the analytes. The best working conditions were as follows: an aliquot of 10 mL 50 g L−1 honey blend solution was conditioned by adding 100 μL 0.1 mol L−1 hydrochloric acid (pH 2) and finally extracted with 100 μL Triton X-114 100 g L−1 at 85 °C for 5 min using CME technique. Under optimal experimental conditions, the enrichment factor (EF) was 167 and limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N = 3), ranged between 0.03 and 0.47 ng g−1. The method precision was evaluated over five replicates at 1 ng g−1 with RSDs ≤9.5%. The calibration graphs were linear within the concentration range of 0.3–1000 ng g−1 for chlorpirifos; and 1–1000 ng g−1 for fenitrothion, parathion and methidathion, respectively. The coefficients of correlation were ≥0.9992. Validation of the methodology was performed by standard addition method at two concentration levels (2 and 20 ng g−1). The recoveries were ≥90%, indicating satisfactory robustness of the methodology, which could be successfully applied for determination of OPPs in honey samples of different Argentinean regions. Two of the analyzed samples showed levels of methidathion ranged between 1.2 and 2.3 ng g−1.  相似文献   

9.
In the present study, a novel analytical approach for the simultaneous determination of 27 brominated flame retardants (BFRs), namely polybrominated diphenyl ethers (PBDEs), isomers of hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA) and several novel BFRs (NBFRs), together with 18 perfluoroalkyl substances (PFASs) in indoor dust was developed and validated. To achieve integrated isolation of analytes from the sample and their fractionation, a miniaturized method based on matrix solid phase dispersion (MSPD) was employed. Principally, after mixing the dust (<0.1 g) with the Florisil®, the mixture was applied on the top of a sorbent (Florisil®) placed in glass column and then analytes were eluted using solvents with different polarities. For the identification/quantification of target compounds largely differing in polarity, complementary techniques represented by gas and liquid chromatography coupled to tandem mass spectrometry (GC–MS/MS and LC–MS/MS) were used. The results of validation experiments, which were performed on the SRM 2585 material (for PBDEs, HBCDs and TBBPA), were in accordance with the certified/reference values. For other analytes (NBFRs and PFASs), the analysis of an artificially contaminated blank dust sample was realized. The method recoveries for all target compounds ranged from 81 to 122% with relative standard deviations lower than 21%. The quantification limits were in the range of 1–25 ng g−1 for BFRs and 0.25–1 ng g−1 for PFASs. Finally, 18 samples (6 households × 3 sampling sites) were analyzed. The high variability between concentrations of PFASs and BFRs in the dust samples from various households as well as collecting sites in a respective house was observed. The total amounts of PFASs and BFRs were in the range of 1.58–236 ng g−1 (median 10.6 ng g−1) and 39.2–2320 ng g−1 (median 325 ng g−1), respectively. It was clearly shown that dust from the indoor environment might be a significant source of human exposure to various organohalogen pollutants.  相似文献   

10.
A solid-phase microextraction (SPME) method for the determination of five amphetamine type stimulants (ATSs) in water and urine samples is presented. Analytes were simultaneously derivatized with iso-butyl chloroformate (iBCF) in the aqueous sample while being extracted, improving in this way the extractability of ATSs and permitting their determination by gas chromatography–mass spectrometry (GC–MS). The SPME procedure was carefully optimized in order to achieve adequate limits of detection (LODs) for environmental concentrations. Hence, different operational parameters were considered: type of SPME coating, ionic strength, basic catalyzer and derivatizing agent amount, extraction time and temperature. The final SPME procedure consists into the extraction of 100 mL of sample containing 2 g of dipotassium monohydrogen phosphate trihydrate and 100 μL of iBCF (1:1 in acetonitrile), for 40 min at 60 °C with a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber. Under these conditions, LODs in wastewater ranged from 0.4 to 2 ng L−1, relative recoveries in the 84–114% range and relative standard deviations (RSD) lower than 15% were obtained. The application of the method to wastewater and river water samples showed the ecstasy ATS, 3,4-methylenedioxymethamphetamine (MDMA), as the most frequently detected, followed by methamphetamine, in concentrations around 20 ng L−1. Finally, the method was downscaled and also validated with urine samples, proving its good performance with this matrix too: RSD < 11%, recoveries in the 98–110% range and LODs lower than 0.1 μg L−1.  相似文献   

11.
It is critical to develop a cost-effective quantitative/semiquantitative assay for rapid diagnosis and on-site detection of toxic or harmful substances. Here, a naked-eye based semiquantitative immunochromatographic strip (NSI-strip) was developed, on which three test lines (TLs, TL-I, TL-II and TL-III) were dispensed on a nitrocellulose membrane to form the test zone. Similar as the traditional strip assay for small molecule, the NSI-strip assay was also based on the competitive theory, difference was that the analyte competed three times with the capture reagent for the limited number of antibody binding sites. After the assay, the number of TLs developed in the test zone was inversely proportional to the analyte concentration, thus analyte content levels could be determined by observing the appeared number of TLs. Taking aflatoxin B1 as the model analyte, visual detection limit of the NSI-strip was 0.06 ng mL−1 and threshold concentrations for TL-I–III were 0.125, 0.5, and 2.0 ng mL−1, respectively. Therefore, according to the appeared number of TLs, the following concentration ranges would be detectable by visual examination: 0–0.06 ng mL−1 (negative samples), and 0.06–0.125 ng mL−1, 0.125–0.5 ng mL−1, 0.5–2.0 ng mL−1 and >2.0 ng mL−1 (positive samples). That was to say, compared to traditional strips the NSI-strip could offer more parameter information of the target analyte content. In this way, the NSI-strip improved the qualitative presence/absence detection of traditional strips by measuring the content (range) of target analytes semiquantitatively.  相似文献   

12.
An approach to the synthesis of hydroxyl-terminated polymethylphenylsiloxane (PMPS-OH) was proposed and the synthesized PMPS-OH was successfully applied as a precursor to prepare a novel coating for solid-phase microextraction (SPME) via the sol-gel process. The thickness and length of the prepared coating was 70 μm and 1.5 cm, respectively. The extraction efficiency of the PMPS-coated fiber for selected pesticides was higher than that of commercial fibers including 100 μm polydimethylsiloxane (PDMS), 85 μm polyacrylate (PA) and 65 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB). The influence of the extraction process, extraction temperature, extraction time, stirring rate, ionic strength, GC inlet conditions, desorption temperature and time for PMPS-coated fiber application was studied and optimized. Several experiments were carried out to evaluate the analytical characteristics of the proposed SPME-GC-ECD method under optimized conditions. The linearity was from 0.5 to 100 ng g−1 for p,p′-DDE, p,p′-DDD and bifenthrin, and from 2 to 100 ng g−1 for o,p′-DDT, p,p′-DDT, fenpropathrin, beta-cyfluthrin and cyhalothrin. The detection limits of these pesticides were between 0.13 and 1.45 ng g−1. The recovery of the pesticides spiked in various vegetables at 4 ng g−1 ranged from 42.9% to 105.3%, and the relative standard deviations were less than 16.2%.  相似文献   

13.
A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, and C6H5Hg+). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L−1 for CH3Hg+, 13 ng L−1 for Hg2+, 34 ng L−1 for C2H5Hg+ and 30 ng L−1 for C6H5Hg+ for 24 h DGT accumulation at 25 °C.  相似文献   

14.
A rapid, sensitive chemiluminescent enzyme immunoassay (CLEIA) for ractopamine (RAC) based on a single-chain variable fragment (scFv)-alkaline phosphatase (AP) fusion protein was developed. The scFv gene was prepared by cloning the heavy- and light-chain variable region genes (VH and VL) from hybridoma cell line AC2, which secretes antibodies against RAC, and assembling VH and VL genes with a linker by means of splicing overlap extension polymerase chain reaction. The resulting scFv gene was inserted into the expression vector pLIP6/GN containing AP to produce the fusion protein in Escherichia coli strain BL21. The purified scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) protocol for detection of RAC. The average concentration required for 50% inhibition of binding and the limit of detection of the assay were 0.25 ± 0.03 and 0.02 ± 0.004 ng mL−1, respectively, and the linear response range extended from 0.05 to 1.45 ng mL−1. The assay was 10 times as sensitive as the corresponding enzyme-linked immunosorbent assay based on the same fusion protein. Cross-reactivity studies showed that the fusion protein did not cross react with RAC analogs. DcCLEIA was used to analyze RAC spiked pork samples, and the validation was confirmed by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS). The results showed a good correlation between the data of dc-CLEIA and HPLC–MS (R2 > 0.99), indicating that the assay was an efficient analytical method for monitoring food safety.  相似文献   

15.
Dispersive solid-phase extraction (DSPE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in soil prior to high-performance liquid chromatography with diode array detection (HPLC-DAD). In the DSPE-DLLME, sulfonylurea herbicides were first extracted from soil sample into acetone–0.15 mol L−1 NaHCO3 (2:8, v/v). The clean-up of the extract by DSPE was carried out by directly adding C18 sorbent into the extract solution, followed by shaking and filtration. After the pH of the filtrate was adjusted to 2.0 with 2 mol L−1 HCl, 60.0 μL chlorobenzene (as extraction solvent) was added into 5.0 mL of it for DLLME procedure (the acetone contained in the solution also acted as dispersive solvent). Under the optimum conditions, the enrichment factors for the compounds were in the range between 102 and 216. The linearity of the method was in the range from 5.0 to 200 ng g−1 with the correlation coefficients (r) ranging from 0.9967 to 0.9987. The method detection limits were 0.5–1.2 ng g−1. The relative standard deviations varied from 5.2% to 7.2% (n = 5). The relative recoveries of the four sulfonylurea herbicides from soil samples at spiking levels of 6.0, 20.0 and 60.0 ng g−1 were in the range between 76.3% and 92.5%. The proposed method has been successfully applied to the analysis of the four target sulfonylurea herbicides in soil samples, and a satisfactory result was obtained.  相似文献   

16.
This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1 h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01–0.07 ng mL−1 and 0.07–0.34 ng g−1, respectively, while the limit quantification was 0.10–0.20 ng mL−1 in gel samples and 0.40–0.97 ng g−1 in fish sample. The reproducibility of the method was good (5–15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces, viscosity of the gel will be reduced therefore allowing faster diffusion which invariably affect desorption time constant. Also, desorption time constant of model drugs in the fish muscle and 0.8–0.9% (w/v) gel model are similar based on free diffusion of studied compounds. In addition, in vitro and in vivo desorption time constant comparison shows that desorption time constant in an in vivo system (live fish muscle) is generally higher than an in vitro system (dead fish muscle) except for sertraline and nordiazepam. This study demonstrates SPME as a simple investigative tool to understand kinetics of desorption in an in vivo system with a goal to measure desorption rate of pharmaceuticals in fish.  相似文献   

17.
Sensitive and reliable methods have been developed and validated for determination of commonly consumed azole antifungal pharmaceuticals (clotrimazole, econazole, ketoconazole, and miconazole) and biocides (propiconazole and tebuconazole) in various waters and sewage sludge. Solid phase extraction (SPE) combined with ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) was used to determine the azole antifungals in waters. Azole antifungals in sewage sludge were extracted with ultrasonic-assisted extraction, followed by SPE cleanup and UHPLC–MS/MS detection. Quantification was performed by internal standard calibration in multiple reaction monitoring mode. Recoveries were mostly in the range of 52–110% with relative standard deviations generally within 20%. Method quantification limits were 0.5–6 ng L−1 in waters and 3–9 ng g−1 dry weight (dw) in sewage sludge, respectively. The methods were applied to determine the azole antifungals in wastewater, river water, sediment, and sewage sludge sampled from the Pearl River Delta, China. Clotrimazole, ketoconazole, and miconazole were widely detected at low ng L−1 in waters, low ng g−1 dw in river sediment, and low μg g−1 dw in sewage sludge. The methods can provide valuable tools for investigating occurrence and fate of the azole antifungals in the environment.  相似文献   

18.
This paper presents the development, optimization and validation of a LC–MS/MS methodology to determine the antiparasitic veterinary drug toltrazuril and its two main metabolites, toltrazuril sulfoxide and toltrazuril sulfone, in environmental surface water, soil and animal manure. Using solid phase extraction and selective pressurized liquid extraction with integrated clean-up, the analytical method allows for the determination of these compounds down to 0.06–0.13 ng L−1 in water, 0.01–0.03 ng g−1 dw in soil and 0.22–0.51 ng g−1 dw in manure. The deuterated analog of toltrazuril was used as internal standard, and ensured method accuracy in the range 96–123% for water and 77–110% for soil samples. The developed method can also be applied to simultaneously determine steroid hormones in the solid samples. The antiparasitic drug and its metabolites were found in manure and soil up to 114 and 335 pg g−1 dw, respectively. Little is known regarding the environmental fate and effects of these compounds; consequently more research is urgently needed.  相似文献   

19.
A rapid and sensitive method has been developed for the simultaneous detection of cyromazine and melamine in chicken eggs using the quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS). The optimal extraction solvent for the liquid–liquid extraction was 5 mL of acetonitrile with a 0.1 M hydrochloric acid aqueous solution (99.5:0.5, v/v). The extract was cleaned with 0.5 g of anhydrous magnesium sulfate and 10 mg of graphitized carbon black. The analysis of cyromazine and melamine was accomplished by combining the use of an anion exchange LC column with tandem mass spectrometry in the positive electrospray ionization mode with selected reaction monitoring mode (SRM). The detection limits were 1.6 ng g−1 for cyromazine and 8 ng g−1 for melamine, and the quantitation limits were 5.5 ng g−1 for cyromazine and 25 ng g−1 for melamine. The recoveries of cyromazine and melamine in the spiked egg samples were 83.2% and 104.6%, respectively, with an relative standard deviation (RSD) of less than 18.1%. The intra-day and inter-day precisions, represented by the RSD, ranged from 1.5% to 8.8% and 6.8% to 14.3%, respectively. The proposed method was tested by analyzing chicken eggs from the markets and from the veterinary medicine laboratory. The concentrations of cyromazine and melamine detected in these samples were in the range of 20–94 ng g−1. The results demonstrated that the QuEChERS method combined with LC–MS/MS is a simple, rapid and inexpensive method for the analysis of cyromazine and melamine in eggs.  相似文献   

20.
Abdorreza Mohammadi 《Talanta》2009,78(3):1107-1114
A simple and rapid headspace solid-phase microextraction (HS-SPME) based method is presented for the simultaneous determination of atrazine and ametryn in soil and water samples by ion mobility spectrometry (IMS). A dodecylsulfate-doped polypyrrole (PPy-DS), synthesized by electrochemical method, was applied as a laboratory-made fiber for SPME. The HS-SPME system was designed with a cooling device on the upper part of the sample vial and a circulating water bath for adjusting the sample temperature. The extraction properties of the fiber to spiked soil and water samples with atrazine and ametryn were examined, using a HS-SPME device and thermal desorption in injection port of IMS. Parameters affecting the extraction efficiency such as the volume of water added to the soil, pH effect, extraction time, extraction temperature, salt effect, desorption time, and desorption temperature were investigated. The HS-SPME-IMS method with PPy-DS fiber, provided good repeatability (RSDs < 10 %), simplicity, good sensitivity and short analysis times for spiked soil (200 ng g−1) and water samples (100 and 200 ng mL−1). The calibration graphs were linear in the range of 200-4000 ng g−1 and 50-2800 ng mL−1 for soil and water respectively (R2 > 0.99). Detection limits for atrazine and ametryn were 37 ng g−1 (soil) and 23 ng g−1 (soil) and 15 ng mL−1 (water) and 10 ng mL−1 (water), respectively. To evaluate the accuracy of the proposed method, atrazine and ametryn in the three kinds of soils and two well water samples were determined. Finally, comparing the HS-SPME results for extraction and determination of selected triazines using PPy-DS fiber with the other methods in literature shows that the proposed method has comparable detection limits and RSDs and good linear ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号