首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between the reduced MFE solutions based on POD and usual MFE solutions are derived. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced MFE formulation based on POD is feasible and efficient in finding numerical solutions for the non-stationary conduction-convection problems.  相似文献   

2.
罗振东  高骏强  孙萍  安静 《计算数学》2013,35(2):159-170
利用特征正交分解(proper orthogonal decomposition,简记为POD)技术研究交通流的Aw-Rascle-Zhang(ARZ)模型. 建立一种基于 POD方法维数较低的外推降维有限差分格式, 并用数值例子检验数值计算结果与理论结果相吻合, 进一步表明基于POD方法的外推降维有限差分格式对于求解交通流方程数值解是可行和有效的.  相似文献   

3.
A proper orthogonal decomposition (POD) technique is used to reduce the finite volume element (FVE) method for two-dimensional (2D) viscoelastic equations. A reduced-order fully discrete FVE algorithm with fewer degrees of freedom and sufficiently high accuracy based on POD method is established. The error estimates of the reduced-order fully discrete FVE solutions and the implementation for solving the reduced-order fully discrete FVE algorithm are provided. Some numerical examples are used to illustrate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order fully discrete FVE algorithm is one of the most effective numerical methods by comparing with corresponding numerical results of finite element formulation and finite difference scheme and that the reduced-order fully discrete FVE algorithm based on POD method is feasible and efficient for solving 2D viscoelastic equations.  相似文献   

4.
在这项工作中,我们研究了求解非局部体积守恒Allen-Cahn (AC)方程的全离散傅里叶伪谱数值格式的误差估计.该数值格式的时间行军方法基于著名的不变能量平方法(IEQ). 我们证明了所提出的全离散数值方法是唯一可解,无条件能量稳定的,并获得了该方案在空间和时间上的最优误差估计.此外,我们还进行了一些数值检验来验证理论结果.  相似文献   

5.
Developement of numerical methods for obtaining approximate solutions to the three dimensional diffusion equation with an integral condition will be carried out. The numerical techniques discussed are based on the fully explicit (1,7) finite difference technique and the fully implicit (7,1) finite difference method and the (7,7) Crank‐Nicolson type finite difference formula. The new developed methods are tested on a problem. Truncation error analysis and numerical examples are used to illustrate the accuracy of the new algorithms. The results of numerical testing show that the numerical methods based on the finite difference techniques discussed in the present article produce good results. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 193–202, 2002; DOI 10.1002/num.1040  相似文献   

6.
The finite difference time domain (FDTD) method is an important tool in numerical electromagnetic simulation. There are many ways to construct a finite difference approximation such as the Taylor series expansion theorem, the filtering theory, etc. This paper aims to provide the comparison between the Taylor finite difference (TFD) scheme based on the Taylor series expansion theorem and the window finite difference (WFD) scheme based on the filtering theory. Their properties have been examined in detail, separately. In addition, the formula of the generalized finite difference (GFD) scheme is presented, which can include both the TFD scheme and the WFD scheme. Furthermore, their application in the numerical solution of Maxwell's equations is presented. The formulas for the stability criterion and the numerical dispersion relation are derived and analyzed. In order to evaluate their performance more accurately, a new definition of error is presented. Upon it, the effect of several factors including the grid resolution, the Courant number and the aspect ratio of the cell on the performance of the numerical dispersion is examined.  相似文献   

7.
Development and Comparison of Numerical Fluxes for LWDG Methods   总被引:1,自引:0,他引:1  
The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.  相似文献   

8.
A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.  相似文献   

9.
In this paper, we present an efficient numerical algorithm for solving a general class of nonlinear singular boundary value problems. This present algorithm is based on the Adomian decomposition method (ADM) and Green’s function. The method depends on constructing Green’s function before establishing the recursive scheme. In contrast to the existing recursive schemes based on ADM, the proposed numerical algorithm avoids solving a sequence of transcendental equations for the undetermined coefficients. The approximate series solution is calculated in the form of series with easily computable components. Moreover, the convergence analysis and error estimation of the proposed method is given. Furthermore, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The numerical results reveal that the proposed method is very effective.  相似文献   

10.
In this article, a numerical method for recovering the local volatility in Black–Scholes model is proposed based on the Dupire formula in which the numerical derivatives are used. By Tikhonov regularization, a new numerical differentiation method in two-dimensional (2-D) case is presented. The convergent analysis and numerical examples are also given. It shows that our method is efficient and stable.  相似文献   

11.
In general, we will use the numerical differentiation when dealing with the differential equations. Thus the differential equations can be transformed into algebraic equations and then we can get the numerical solutions. But as we all have known, the numerical differentiation process is very sensitive to even a small level of errors. In contrast it is expected that on average the numerical integration process is much less sensitive to errors. In this paper, based on the Sinc method we provide a new method using Sinc method incorporated with the double exponential transformation based on the interpolation of the highest derivatives (SIHD) for the differential equations. The error in the approximation of the solution is shown to converge at an exponential rate. The numerical results show that compared with the exiting results, our method is of high accuracy, of good convergence with little computational efforts. It is easy to treat nonhomogeneous mixed boundary condition for our method, which is unlike the traditional Sinc method.  相似文献   

12.
Based on numerical simulation and visualization, the vortex structure of the flow past a sphere moving uniformly and horizontally in a linearly (density) stratified viscous fluid with an increasing degree of stratification (with the internal Froude number Fr decreasing from infinity to 0.005) at Re = 100 is analyzed in detail for the first time. The classification of the flow regimes is refined. The direct numerical simulation is based on the method of splitting with respect to physical factors (MERANZH) with an explicit hybrid finite-difference scheme, which is second-order accurate in space, monotone, and has a minimal numerical viscosity and dispersion.  相似文献   

13.
In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.  相似文献   

14.
Automatic global error control based on a combined control of step size and order presented by Kulikov and Khrustaleva in 2008 is investigated. Special attention is given to the efficiency of computation, because the implicit extrapolation based on multistage implicit Runge-Kutta schemes may be expensive. Specifically, we discuss a technique of global error estimation and control in order to compute a numerical solution satisfying the user-supplied accuracy conditions (in exact arithmetic) automatically. The theoretical results of this paper are confirmed by numerical experiments on test problems.  相似文献   

15.
As an improvement of the Meshless Local Petrov–Galerkin (MLPG), the Direct Meshless Local Petrov–Galerkin (DMLPG) method is applied here to the numerical solution of transient heat conduction problem. The new technique is based on direct recoveries of test functionals (local weak forms) from values at nodes without any detour via classical moving least squares (MLS) shape functions. This leads to an absolutely cheaper scheme where the numerical integrations will be done over low–degree polynomials rather than complicated MLS shape functions. This eliminates the main disadvantage of MLS based methods in comparison with finite element methods (FEM), namely the costs of numerical integration.  相似文献   

16.
A numerical method for solving the nonlinear Fredholom integral equations is presented. The method is based on interpolation by radial basis functions (RBF) to approximate the solution of the Fredholm nonlinear integral equations. Several examples are given and numerical examples are presented to demonstrate the validity and applicability of the method.  相似文献   

17.
A method based on higher-order partial differential equation (PDE) numerical scheme are proposed to obtain the transition cumulative distribution function (CDF) of the diffusion process (numerical differentiation of the transition CDF follows the transition probability density function (PDF)), where a transformation is applied to the Kolmogorov PDEs first, then a new type of PDEs with step function initial conditions and 0, 1 boundary conditions can be obtained. The new PDEs are solved by a fourth-order compact difference scheme and a compact difference scheme with extrapolation algorithm. After extrapolation, the compact difference scheme is extended to a scheme with sixth-order accuracy in space, where the convergence is proved. The results of the numerical tests show that the CDF approach based on the compact difference scheme to be more accurate than the other estimation methods considered; however, the CDF approach is not time-consuming. Moreover, the CDF approach is used to fit monthly data of the Federal funds rate between 1983 and 2000 by CKLS model.  相似文献   

18.
The numerical solution of stochastic partial differential equations (SPDEs) is at a stage of development roughly similar to that of stochastic ordinary differential equations (SODEs) in the 1970s, when stochastic Taylor schemes based on an iterated application of the Itô formula were introduced and used to derive higher order numerical schemes. An Itô formula in the generality needed for Taylor expansions of the solution of a SPDE is however not available. Nevertheless, it was shown recently how stochastic Taylor expansions for the solution of a SPDE can be derived from the mild form representation of the SPDE, which avoid the need of an Itô formula. A brief review of the literature is given here and the new stochastic Taylor expansions are discussed along with numerical schemes that are based on them. Both strong and pathwise convergence are considered.  相似文献   

19.
The numerical technique based on two-dimensional block pulse functions(2D-BPFs) is proposed for solving the time fractional convection diffusion equations with variable coeficients(FCDEs).We introduce the block pulse operational matrices of the fractional order differentiation.Furthermore,we translate the original equation into a Sylvester equation by the proposed method.Finally,some numerical examples are given and numerical results are shown to demonstrate the accuracy and reliability of the above-mentioned algorithm.  相似文献   

20.
Using FCT idea,the non-oscillation MMOCAA(The modified method of characteristics with adjusted advection) finite difference scheme satisfing the discrete maximum principle for convection-dominated diffusion equation in 2D is constructed.The scheme is free from oscillation,with which the problem is solved by the MMOCAA difference method based on 2-order Lag-range interpolation proposed by Jim.Douglas, Jr.(Numer.Math.,1999,83:353-369.). The error analysis of the new scheme and numerical example are given in the paper.The numerical example shows that the scheme has smaller numerical viscosity than the MMOCAA difference method based on bilineax Lagrange interpolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号