首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natalia Campillo 《Talanta》2007,71(3):1417-1423
A direct immersion solid-phase microextraction (SPME) procedure was used in combination with capillary gas chromatography with atomic emission detection (GC-AED) for the determination of 10 pesticides (organochlorines, organophosphorus compounds and pyrethrins) in herbal and tea infusions. Ionic strength, sample dilution and time and temperature of the absorption and desorption stages were some of the parameters investigated in order to select the optimum conditions for SPME with a 100 μm PDMS fiber-coating. Element-specific detection and quantification was carried out by monitoring the chlorine (479 nm) and bromine (478 nm) emission lines, which provided nearly specific chromatograms. Calibration was carried out by using a spiked sample infusion. The detection limits varied between 11.9 ng ml−1 for deltamethrin and 0.03 ng ml−1 for p,p′-DDE and p,p′-DDD. The recoveries ranged from 73.5% for deltamethrin to 108.3% for p,p′-DDT in a spiked white tea infusion. Two of the eight samples analyzed contained low levels of some the pesticides considered.  相似文献   

2.
Nine volatile halogenated organic compounds (VHOCs), including four trihalomethanes (THMs), were determined in soils by capillary gas chromatography with microwave induced-plasma atomic emission spectrometry (GC-AED), using a purge-and-trap system (PT) for sample preconcentration. Analytes were previously extracted from the soil sample in methanol and the extract was preconcentrated before being chromatographed. Element-specific detection and quantification were carried out monitoring two wavelength emission lines, corresponding to chlorine (479 nm) and bromine (478 nm). Each chromatographic run took 21 min, including the purge step. The method showed a precision of 1.1-7.2% (R.S.D.) depending on the compound. Detection limits ranged from 0.05 to 0.55 ng ml−1, for chloroform and dichloromethane, respectively, corresponding to 3.3 and 36.0 ng g−1 in the soil samples. The chromatographic profiles obtained showed no interference from co-extracted compounds. Low levels of dichloromethane and chloroform ranging from 0.04 to 1.13 μg g−1 were found in samples obtained from small gardens irrigated with tap water. The method is reliable and can be used for routine monitoring in soil samples.  相似文献   

3.
Butyltin compounds are widespread contaminants which have also been found in some wines, determined by liquid-liquid extraction followed by alkylation with a Grignard reagent and gas chromatography-mass spectrometric (GC-MS) analysis. A promising alternative to this extraction/derivatization method is the one-step tetraethylborate in situ ethylation/solid-phase micro-extraction (SPME) method. In this work, a SPME-GC-MS method for the determination of butyltin compounds in wine was optimised. The optimised parameters concerned the pre-treatment with tetramethylammonium hydroxide, matrix modification with sodium chloride, tetraethylborate concentration, extraction time and temperature, and the GC separation program. The analytical figures of merit of the optimised method (range, limit of detection (LOD) and reproducibility) were evaluated. The sensitivity (range 20-1421 kcounts μg−1 l−1 as Sn) and LOD (range, 0.01-0.2 μg l−1 as Sn) depended greatly on the butyltin species to be measured and on the type of wine. For the tested species (monobutyltin, dibutyltin and tributyltin) the highest sensitivities were achieved for Port wine samples, followed by red wine>white wine>white Verde wine. The method allowed acceptable repeatability (relative standard deviation (R.S.D.), 6-8%; n=4) and reproducibility (R.S.D., 8-9%; n=3).  相似文献   

4.
Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography (GC) and multivariate data analysis were applied to classify different vinegar types (white and red, balsamic, sherry and cider vinegars) on the basis of their volatile composition. The collected chromatographic signals were analysed using the stepwise linear discriminant analysis (SLDA) method, thus simultaneously performing feature selection and classification. Several options, more or less restrictive according to the final number of considered categories, were explored in order to identify the one that afforded highest discrimination ability. The simplicity and effectiveness of the classification methodology proposed in the present study (all the samples were correctly classified and predicted by cross-validation) are promising and encourage the feasibility of using a similar strategy to evaluate the quality and origin of vinegar samples in a reliable, fast, reproducible and cost-efficient way in routine applications. The high quality results obtained were even more remarkable considering the reduced number of discriminant variables finally selected by the stepwise procedure. The use of only 14 peaks enabled differentiation between cider, balsamic, sherry and wine vinegars, whereas only 3 variables were selected to discriminate between red (RW) and white wine (WW) vinegars. The subsequent identification by gas chromatography-mass spectrometry (GC-MS) of the volatile compounds associated with the discriminant peaks selected in the classification process served to interpret their chemical significance.  相似文献   

5.
In this work, a methodology to characterise the volatile and semi-volatile compounds from marine salt by headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOFMS) was developed. Samples from two saltpans of Aveiro, in Portugal, with diverse locations, obtained over three years (2004, 2005, and 2007) were analysed. A 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was used. The volatiles present in the headspace of the solid salt samples (crystals) were equilibrated overnight at 60 °C and extracted for 60 min prior to injection in the GC × GC/TOFMS. 157 compounds, distributed over the chemical groups of hydrocarbons, aldehydes, esters, furans, haloalkanes, ketones, ethers, alcohols, terpenoids, C13 norisoprenoids, and lactones were detected across the samples. Furans, haloalkanes and ethers were identified for the first time in marine salt. The large number of co-elutions on the first column that were resolved by the GC × GC system revealed the complexity of marine salt volatile composition. The existence of a structured 2D chromatographic behaviour according to volatility, in the first dimension (1D), and primarily polarity, in the second dimension (2D), was demonstrated, allowing more reliable identifications. The resolution and sensitivity of GC × GC/TOFMS enabled the separation and identification of a higher number of volatile compounds compared to GC–qMS, allowing a deeper characterisation of this natural product.  相似文献   

6.
Odorous emissions from wastewater collection systems and treatment facilities affecting quality of life have given local populations reasons to complain for decades. In order to characterise the composition of such malodorous emissions, a method based on headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometry (GC-MS) has been developed to determine a list of compounds belonging to different chemical families, which have been previously described as potentially responsible for odour complaints, in wastewater matrices. Some parameters affecting the chromatographic behaviour of the target compounds were studied (e.g. splitless time). Experimental conditions affecting the extraction process (temperature, time and salt content) were evaluated by applying a factorial design at two levels. Using a DVB/CAR/PDMS fibre and the optimised HS-SPME conditions, calibration curves were constructed with detection limits in the range of 0.003-0.6 μg L(-1). Recovery values higher than 70% and relative standard deviation values between 5 and 16% (n=5) were obtained for all compounds and found to be satisfactory. In wastewater samples, a decrease in the concentration of the analysed compounds through the different treatments was observed. Most of the target analytes were found in influent samples while only octanal and carvone were detected in samples from the plant effluent.  相似文献   

7.
Natalia Campillo 《Talanta》2010,80(5):1856-1861
A method based on solid-phase microextraction (SPME) followed by gas chromatography with microwave-induced plasma atomic emission detection for determining dimethylselenide (DMSe) and dimethyldiselenide (DMDSe) in milk and milk by-products is proposed. Parameters affecting the SPME, such as sample volume or mass, ionic strength, adsorption and desorption times and temperatures were optimized in the headspace mode. The matrix effect was evaluated for the different samples studied, concluding that standard additions calibration was required for quantification purposes. The detection limits ranged from 70 to 110 pg mL−1 for DMSe and from 80 to 400 pg mL−1 for DMDSe, depending on the sample under analysis. None of the twenty-three samples analyzed contained the studied compounds at concentrations above the corresponding detection limits.  相似文献   

8.
Headspace solid phase microextraction (headspace SPME) has been demonstrated to be an excellent solvent-free sampling method. One of the major factors contributing to the success of headspace SPME is the concentrating effect of the fiber coating toward organic compounds. The affinity of the fiber coating toward very volatile analytes, such as chloromethane, may, however, not be large enough for detection at the parts per trillion concentration level. Static headspace analysis, on the other hand, is very effective for these very volatile compounds. As analyte volatility decreases, the sensitivity of static headspace analysis drops. The complementary nature of these two sampling methods can be exploited by combining the SPME device with a gastight syringe. The sensitivity of the new sampling device is better than that of SPME for very volatile compounds or that of static headspace analysis for less volatile compounds. This new method can sample a wide range of compounds from chloromethane (b.p. −24°C) to bromoform (b.p. 149°C) with estimated limits of detection at the low parts per trillion level.  相似文献   

9.
建立了顶空固相微萃取(HSSPME)-气相色谱(GC)-质谱(MS)联用测定纺织品中甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯5种挥发性有机物(VOCs)的分析方法。选择聚二甲基硅氧烷(PDMS)作为萃取涂层,优化了SPME的萃取条件,包括平衡时间、萃取时间、萃取温度、顶空体积、离子强度、搅拌速度、解吸温度和时间以及GC—MS仪器条件。对于甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯方法线性范围分别为0.087~870、3.32~3320、2.28~2280、0.015~150和0.050~50.0ng/g;检出限分别为0.005、0.042、0.670、0.008和0.011ng/g。实际样品加标回收率在80.1%~122%之间,RSD在0.8%~8.6%之间。方法符合纺织品中痕量VOCs的快速分析要求。  相似文献   

10.
N. Campillo 《Talanta》2008,77(2):793-799
A gas chromatography method with atomic emission detection (GC-AED) for the determination of dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and inorganic arsenic was optimized. The analytes were derivatized in the sample solutions with methyl thioglycolate (TGM) and the products were extracted into cyclohexane before an aliquot of this organic phase was directly injected into the chromatograph. The procedure was applied to the analysis of seawaters, wines, beers and infant foods, the last requiring an additional enzymatic reaction prior to analyte derivatization. Detection limits in seawaters and beverages were 0.05, 0.15 and 0.8 ng mL−1 for DMA, MMA and inorganic arsenic, respectively. In infant foods the detection limits were 1, 10 and 25 ng g−1 for DMA, MMA and inorganic arsenic, respectively. Inorganic arsenic was detected in some of the seawater samples and three of the wines analyzed at concentration levels in the range 1-40 ng mL−1, and DMA in several of the infant foods in the range 20-80 ng g−1. The method was validated by analyzing a certified reference material and by recovery studies. All the samples were also analyzed by hydride generation and atomic fluorescence spectrometry (HG-AFS), which provided data for the total arsenic content.  相似文献   

11.
The aroma profile of cocoa products was investigated by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS). SPME fibers coated with 100 μm polydimethylsiloxane coating (PDMS), 65 μm polydimethylsiloxane/divinylbenzene coating (PDMS-DVB), 75 μm carboxen/polydimethylsiloxane coating (CAR-PDMS) and 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane on a StableFlex fiber (DVB/CAR-PDMS) were evaluated. Several extraction times and temperature conditions were also tested to achieve optimum recovery. Suspensions of the samples in distilled water or in brine (25% NaCl in distilled water) were investigated to examine their effect on the composition of the headspace. The SPME fiber coated with 50/30 μm DVB/CAR-PDMS afforded the highest extraction efficiency, particularly when the samples were extracted at 60 °C for 15 min under dry conditions with toluene as an internal standard. Forty-five compounds were extracted and tentatively identified, most of which have previously been reported as odor-active compounds. The method developed allows sensitive and representative analysis of cocoa products with high reproducibility. Further research is ongoing to study chocolate making processes using this method for the quantitative analysis of volatile compounds contributing to the flavor/odor profile.  相似文献   

12.
建立了一种快速简便地测定酱油中挥发性风味成分的顶空固相微萃取(HS-SPME)-气相色谱-质谱法(GC-MS)。以2-辛醇为内标,考察了萃取头、萃取时间、离子强度、萃取温度对酱油样品中挥发性风味物质萃取的影响。该方法对酱油中常见挥发性风味成分的测定有良好的重复性和回收率,对常见挥发性物质的定量比较准确。优化的HS-SPME条件为:涂层厚度为85 μm聚丙烯酸酯(PA)萃取纤维头,于45 ℃、NaCl质量浓度为250 g/L下对酱油样品顶空吸附40 min,于250 ℃下解吸2 min后进行GC-MS分离鉴定。酱油样品的分析结果表明,其挥发性风味物质中含量较高的是醇、酸、酯和酚类,此外还有一些羰基化合物和杂环化合物。  相似文献   

13.
Summary Solid-phase microextraction is a relatively recent extraction technique for sample preparation. It has been used successfully to analyse environmental pollutants in a variety of matrices such as soils, water and air. In this work, a simple and rapid method for the analysis of volatile organic and polar compounds from polluted groundwater samples by SPME coupled with gas chromatography (GC) is described. Different types of fibres were studied and the extraction process was optimised. The fibre that proved to be the best to analyse this kind of samples was CAR-PDMS. The method was validated by analysis of synthetic samples and comparison with headspace—GC. The optimised method was successfully applied to the analysis of ground-water samples.  相似文献   

14.
Multiple headspace solid-phase microextraction (MHS-SPME) coupled with gas chromatography-mass spectrometry has been applied in order to determine 2,4,6-trichloroanisole (2,4,6-TCA), guaiacol, 1-octen-3-ol and 1-octen-3-one in three samples of cork stoppers. These compounds are responsible for cork taint in wine and can modify the organoleptic properties of bottled wine. Variables such as temperature, addition of water, extraction time, and amount of cork were studied. The extractions were performed with a 50/30 microm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fibre for 45 min at 100 degrees C using 20 mg of cork. For calibration, 50 microL of VOC aqueous solutions were used and the extraction were carried out for 45 min at 75 degrees C. The limits of detection of the method expressed as ng of VOC per g of cork were 0.3 for 2,4,6-TCA, 7.5 for guaiacol, 1.7 for 1-octen-3-one and 1.9 for 1-octen-3-ol. Relative standard deviation of replicate samples was less than 10%. Significant losses of analytes were observed when the samples were ground at room temperature. Finally, a recovery study was performed and the MHS-SPME results were validated using Soxhlet extraction results.  相似文献   

15.
Headspace solid‐phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid‐phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box‐plot analysis showed that except for cyclohexanone, 2‐ethyl‐1‐hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n‐heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions.  相似文献   

16.
Salvia spp. are used throughout the world both for food and pharmaceutical purposes. In this study, a method involving headspace solid-phase microextraction combined with gas chromatography–mass spectrometry was developed, to establish the volatiles profile of dried leaves of four Iranian Salvia spp.: Salvia officinalis L., Salvia leriifolia Benth, Salvia macrosiphon Boiss. and two ecotypes of Salvia reuterana Boiss. A total of 95 volatiles were identified from the dried leaves of the five selected samples. Specifically, α-thujone was the main component of S. officinalis L. and S. macrosiphon Boiss. (34.40 and 17.84%, respectively) dried leaves, S. leriifolia Benth was dominated by β-pinene (27.03%), whereas α-terpinene was the major constituent of the two ecotypes of S. reuterana Boiss. (21.67 and 13.84%, respectively). These results suggested that the proposed method can be considered as a reliable technique for isolating volatiles from aromatic plants, and for plant differentiation based on the volatile metabolomic profile.  相似文献   

17.
This paper describes a headspace solid-phase microextraction (HS-SPME) procedure coupled to gas chromatography with mass spectrometric detection (GC–MS) for the determination of eight PAHs in aquatic species. The influence of various parameters on the PAH extraction efficiency was carefully examined. At 75 °C and for an extraction time of 60 min, a polydimethylsiloxane–divinylbenzene (PDMS/DVB) fiber coating was found to be most suitable. Under the optimized conditions, detection limits ranged from 8 to 450 pg g−1, depending on the compound and the sample matrix. The repeatability varied between 7 and 15% (RSD). Accuracy was tested using the NIST SRM 1974b reference material. The method was successfully applied to different samples, and the studied PAHs were detected in several of the samples. Figure Headspace SPME sampling followed by GC–MS facilitates routine monitoring of PAHs in aquatic species  相似文献   

18.
Practical aspects of the application of solid-phase microextraction (SPME) to the determination of volatile aliphatic amines in air are described. Analytes included methylamine (MA), ethylamine (EA), dimethylamine (DMA), diethylamine (DEA), trimethylamine (TMA) and triethylamine (TEA). New SPME stationary phases were examined. The effects of relative humidity and temperature on analytes uptake were taken into account in analysis. Gas chromatography (GC) with flame ionization detector (FID) was used for the final analysis.  相似文献   

19.
The determination of five volatile organochlorine compounds, VOX (chloroform, 1,1,1-trichloroethane, carbon tetrachloride, trichloroethene and tetrachloroethene) in raw landfill leachates and biologically cleansed leachates by GC-MS is investigated. Two extraction and preconcentration procedures were evaluated for recovery of such analies from the samples, including static headspace (HS) and solid phase microextraction by sampling the headspace above the sample (HS-SPME). Optimisation of operating parameters for the best performance of both, sampling and preconcentration techniques was described. Detection limits, time of analysis, precision and linear ranges of both introduction techniques have been established. Application of proposed methods to the determination of the five VOX under study in the above referred samples revealed the absence of such analytes in both leachates. Then both methods were applied to the determination to the five organochlorine compounds under study on spiked leachates samples. While HS-GC-MS offered better analytical precision than HS-SPME-GC-MS, this last technique gave a faster analytical response because no dilution must be done for a reliable VOX determination in landfill leachates. In any case, both sample introduction techniques tested provides excellent recoveries and good analytical precision (ranged from 1 to 3%).  相似文献   

20.
Volatile organic compounds (VOCs) are toxic compounds in the air, water and land. In the proposed method, ultrasound-assisted emulsification microextraction (USAEME) combined with gas chromatography-mass spectrometry (GC-MS) has been developed for the extraction and determination of eight VOCs in water samples. The influence of each experimental parameter of this method (the type of extraction solvent, volume of extraction solvent, salt addition, sonication time and extraction temperature) was optimized. The procedure for USAEME was as follows: 15 μL of 1-bromooctane was used as the extraction solvent; 10 mL sample solution in a centrifuge tube with a cover was then placed in an ultrasonic water bath for 3 min. After centrifugation, 2 μL of the settled 1-bromooctane extract was injected into the GC-MS for further analysis. The optimized results indicated that the linear range is 0.1-100.0 μg/L and the limits of detection (LODs) are 0.033-0.092 μg/L for the eight analytes. The relative standard deviations (RSD), enrichment factors (EFs) and relative recoveries (RR) of the method when used on lake water samples were 2.8-9.5, 96-284 and 83-110%. The performance of the proposed method was gauged by analyzing samples of tap water, lake water and river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号