首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concentrates on iterative methods for obtaining the multiple roots of nonlinear equations. Using the computer algebra system Mathematica, we construct an iterative scheme and discuss the conditions to obtain fourth-order methods from it. All the presented fourth-order methods require one-function and two-derivative evaluation per iteration, and are optimal higher-order iterative methods for obtaining multiple roots. We present some special methods from the iterative scheme, including some known already. Numerical examples are also given to show their performance.  相似文献   

2.
In this work, we develop a new two-parameter family of iterative methods for solving nonlinear scalar equations. One of the parameters is defined through an infinite power series consisting of real coefficients while the other parameter is a real number. The methods of the family are fourth-order convergent and require only three evaluations during each iteration. It is shown that various fourth-order iterative methods in the published literature are special cases of the developed family. Convergence analysis shows that the methods of the family are fourth-order convergent which is also verified through the numerical work. Computations are performed to explore the efficiency of various methods of the family.  相似文献   

3.
Based on quadratically convergent Schröder’s method, we derive many new interesting families of fourth-order multipoint iterative methods without memory for obtaining simple roots of nonlinear equations by using the weight function approach. The classical King’s family of fourth-order methods and Traub-Ostrowski’s method are obtained as special cases. According to the Kung-Traub conjecture, these methods have the maximal efficiency index because only three functional values are needed per step. Therefore, the fourth-order family of King’s family and Traub-Ostrowski’smethod are the main findings of the present work. The performance of proposed multipoint methods is compared with their closest competitors, namely, King’s family, Traub-Ostrowski’s method, and Jarratt’s method in a series of numerical experiments. All the methods considered here are found to be effective and comparable to the similar robust methods available in the literature.  相似文献   

4.
Based on the fourth-order method of Liu et al. [10], eighth-order three-step iterative methods without memory, which are totally free from derivative calculation and reach the optimal efficiency index are presented. The extension of one of the methods for multiple zeros without the knowledge of multiplicity is presented. Further accelerations will be provided through the concept of with memory iteration methods. Moreover, it is shown by way of illustration that the novel methods are useful on a series of relevant numerical problems when high precision computing is required.  相似文献   

5.
Recently, some new multilevel preconditioners for solving elliptic finite element discretizations by iterative methods have been proposed. They are based on appropriate splittings of the finite element spaces under consideration, and may be analyzed within the framework of additive Schwarz schemes. In this paper we discuss some multilevel methods for discretizations of the fourth-order biharmonic problem by rectangular elements and derive optimal estimates for the condition numbers of the preconditioned linear systems. For the Bogner–Fox–Schmit rectangle, the generalization of the Bramble–Pasciak–Xu method is discussed. As a byproduct, an optimal multilevel preconditioner for nonconforming discretizations by Adini elements is also derived.  相似文献   

6.
A new iterative method of the fourth-order for the simultaneous determination of polynomial zeros is proposed. This method is based on a suitable zero-relation derived from the fourth-order method for a single zero belonging to the Schröder basic sequence. One of the most important problems in solving polynomial equations, the construction of initial conditions that enable both guaranteed and fast convergence, is studied in detail for the proposed method. These conditions are computationally verifiable since they depend only on initial approximations, the polynomial coefficients and the polynomial degree, which is of practical importance. The construction of improved methods in ordinary complex arithmetic and complex circular arithmetic is discussed. Finally, numerical examples and the comparison with existing fourth-order methods are given.  相似文献   

7.
We further present some semi-discrete modifications to the cubically convergent iterative methods derived by Kanwar and Tomar (Modified families of Newton, Halley and Chebyshev methods, Appl. Math. Comput. http://dx.doi.org/10.1016/j.amc.2007.02.119) and derived a number of interesting new classes of third-order multi-point iterative methods free from second derivatives. Furthermore, several functions have been tested and all the methods considered are found to be effective and compared to the well-known existing third and fourth-order multi-point iterative methods.   相似文献   

8.
In this paper we present two new schemes, one is third-order and the other is fourth-order. These are improvements of second-order methods for solving nonlinear equations and are based on the method of undetermined coefficients. We show that the fourth-order method is more efficient than the fifth-order method due to Kou et al. [J. Kou, Y. Li, X. Wang, Some modifications of Newton’s method with fifth-order covergence, J. Comput. Appl. Math., 209 (2007) 146–152]. Numerical examples are given to support that the methods thus obtained can compete with other iterative methods.  相似文献   

9.
In this paper new fourth order optimal root-finding methods for solving nonlinear equations are proposed. The classical Jarratt’s family of fourth-order methods are obtained as special cases. We then present results which describe the conjugacy classes and dynamics of the presented optimal method for complex polynomials of degree two and three. The basins of attraction of existing optimal methods and our method are presented and compared to illustrate their performance.  相似文献   

10.
A mixed finite element method is developed for a nonlinear fourth-order elliptic problem. Optimal L2 error estimates are proved by using a special interpolation operator on the standard tensor-product finite elements of order k?1. Then two iterative schemes are presented and proved to keep the same optimal error estimates. Three numerical examples are provided to support the theoretical analysis.  相似文献   

11.
In this paper, a family of fourth-order Steffensen-type two-step methods is constructed to make progress in including Ren-Wu-Bi’s methods [H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence, Appl. Math. Comput. 209 (2009) 206-210] and Liu-Zheng-Zhao’s method [Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications, Appl. Math. Comput. 216 (2010) 1978-1983] as its special cases. Its error equation and asymptotic convergence constant are deduced. The family provides the opportunity to obtain derivative-free iterative methods varying in different rates and ranges of convergence. In the numerical examples, the family is not only compared with the related methods for solving nonlinear equations, but also applied in the solution of BVPs of nonlinear ODEs by the finite difference method and the multiple shooting method.  相似文献   

12.
In this paper, we use the variational iteration technique to suggest and analyze some new iterative methods for solving a system of nonlinear equations. We prove that the new method has fourth-order convergence. Several numerical examples are given to illustrate the efficiency and performance of the new iterative methods. Our results can be viewed as a refinement and improvement of the previously known results.  相似文献   

13.
We study the convergence and performance of iterative methods with the fourth-order compact discretization schemes for the one- and two-dimensional convection–diffusion equations. For the one-dimensional problem, we investigate the symmetrizability of the coefficient matrix and derive an analytical formula for the spectral radius of the point Jacobi iteration matrix. For the two-dimensional problem, we conduct Fourier analysis to determine the error reduction factors of several basic iterative methods and comment on their potential use as the smoothers for the multilevel methods. Finally, we perform numerical experiments to verify our Fourier analysis results. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:263–280, 1998  相似文献   

14.
15.
Numerical Algorithms - In this paper, a two-step class of fourth-order iterative methods for solving systems of nonlinear equations is presented. We further extend the two-step class to establish a...  相似文献   

16.
Darvishi and Barati [M.T. Darvishi, A. Barati, Super cubic iterative methods to solve systems of nonlinear equations, Appl. Math. Comput., 2006, 10.1016/j.amc.2006.11.022] derived a Super cubic method from the Adomian decomposition method to solve systems of nonlinear equations. The authors showed that the method is third-order convergent using classical Taylor expansion but the numerical experiments conducted by them showed that the method exhibits super cubic convergence. In the present work, using Ostrowski’s technique based on point of attraction, we show that their method is in fact fourth-order convergent. We also prove the local convergence of another fourth-order method from 3-node quadrature rule using point of attraction.  相似文献   

17.
In this paper, based on some known fourth-order Steffensen type methods, we present a family of three-step seventh-order Steffensen type iterative methods for solving nonlinear equations and nonlinear systems. For nonlinear systems, a development of the inverse first-order divided difference operator for multivariable function is applied to prove the order of convergence of the new methods. Numerical experiments with comparison to some existing methods are provided to support the underlying theory.  相似文献   

18.
We develop a simple yet effective and applicable scheme for constructing derivative free optimal iterative methods, consisting of one parameter, for solving nonlinear equations. According to the, still unproved, Kung-Traub conjecture an optimal iterative method based on k+1 evaluations could achieve a maximum convergence order of $2^{k}$ . Through the scheme, we construct derivative free optimal iterative methods of orders two, four and eight which request evaluations of two, three and four functions, respectively. The scheme can be further applied to develop iterative methods of even higher orders. An optimal value of the free-parameter is obtained through optimization and this optimal value is applied adaptively to enhance the convergence order without increasing the functional evaluations. Computational results demonstrate that the developed methods are efficient and robust as compared with many well known methods.  相似文献   

19.
提出了求解非线性方程根新的四阶收敛迭代方法,新方法每次迭代只需要两次函数计算,一次一阶导数值计算,效能指数达到1.587.通过几个数值算例来解释该方法的有效性.  相似文献   

20.
In this paper, we present an improvement of the local order of convergence to increase the efficiency of some fourth-order iterative methods and the order can be improved from four to eight. Per iteration the present methods require three evaluations of the function and one evaluation of its first derivative and therefore have the efficiency index equal to 1.682. Numerical tests verifying the theory are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号