首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

2.
In this work, a rapid, simple and efficient homogeneous liquid–liquid microextraction via flotation assistance (HLLME-FA) method was developed based on applying low density organic solvents without no centrifugation. For the first time, a special extraction cell was designed to facilitate collection of the low-density solvent extraction in the determination of four polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). The effect of different variables on the extraction efficiency was studied simultaneously using experimental design. The variables of interest in the HLLME-FA were selected as extraction and homogeneous solvent volumes, ionic strength and extraction time. Response surface methodology (RSM) was applied to investigate the optimum conditions of all the variables. Using optimized variables in the extraction process, for all target PAHs, the detection limits, the precisions and the linearity of the method were found in the range of 14–41 μg L−1, 3.7–10.3% (RSD, n = 3) and 50–1000 μg L−1, respectively. The proposed method has been successfully applied to the analysis of four target PAHs in the water samples, and satisfactory results were obtained.  相似文献   

3.
A new analytical temperature-assisted ionic liquid-based dispersive liquid–liquid microextraction (TA-IL-DLLME) method was developed for glyphosate and aminomethylphosphonic acid determination in water samples. Extracted analytes were derivatized using 9-fluoroenylmethylchloroformate and quantified by liquid chromatography with fluorescence detection. For the TA-IL-DLLME method, two strategies for phase solubilization were evaluated; in approach 1, the ionic liquid and aqueous matrix sample were mixed and then heated, while in approach 2, the aqueous sample was first heated and then the ionic liquid was injected. For both approaches, optimization included parameters that significantly affect extraction efficiency: ionic liquid type and volume, solubilization temperature and time, cooling and centrifugation time. Among the evaluated ionic liquids, 1-decyl-3-methylimidazolium tetrafluoroborate showed the best performance for TA-IL-DLLME and was selected for the two solubilization approaches; with approach 2, slightly better results were obtained. Thus, sample analyses were performed using a procedure based on approach 2. An important matrix effect, attributed to the presence of salts and metals in real water samples was observed. Sample acidification before derivatization allowed this problem to diminish, with recoveries ranging from 75 and 99%, and enrichment factors between 57 and 76 for target analytes.  相似文献   

4.
A sample preparation method for the determination of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in sediment samples was developed using gas chromatography–mass spectrometry (GC–MS). Dispersive liquid–liquid microextraction (DLLME) with derivatization was performed following the subcritical water extraction (SWE) that provided which was provided by accelerated solvent extraction (ASE). Several important parameters that affected both SWE extraction and DLLME, such as the selection of organic modifier, its volume, extraction temperature, extraction pressure and extraction time were also investigated. High sensitivity of the hydroxylated PAHs derivatives by N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) could be achieved with the limits of detection (LODs) ranging from 0.0139 (2-OH-nap) to 0.2334 μg kg−1 (3-OH-fluo) and the relative standard deviations (RSDs) between 2.81% (2-OH-phe) and 11.07% (1-OH-pyr). Moreover, the proposed method was compared with SWE coupled with solid phase extraction (SPE), and the results showed that ASE–DLLME was more promising with recoveries ranging from 57.63% to 91.07%. The proposed method was then applied to determine the hydroxylated metabolites of phenanthrene in contaminated sediments produced during the degradation by two PAH-degraders isolated from mangrove sediments.  相似文献   

5.
A novel microextraction method termed ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209–276) and accepted recoveries (79–110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2–100 μg/L, and the relative standard deviations (RSDs, n = 5) were 4.5–10.7%. The limits of detection for the four insecticides were 0.53–1.28 μg/L at a signal-to-noise ratio (S/N) of 3.  相似文献   

6.
In this work, a hydrophilic task-specific ionic liquid (TSIL) of 1-chloroethyl-3-methylimidazolium chloride functionalized with 8-hydroxyquinoline was used in a dispersive liquid–liquid microextraction method followed by flame atomic absorption spectrometry for the enrichment and determination of trace amounts of cadmium (Cd2+) ions. The simultaneous chelation and extraction of Cd2+ ions was carried out by the TSIL. Fine droplets of the water-immiscible TSIL containing target analyte were generated in situ by addition of an anion exchanger potassium hexafluorophosphate (KPF6) salt to the sample tube. After phase separation by centrifugation for 4 min, the sedimented TSIL was diluted with acidified ethanol for measurement of Cd2+ content. Some significant parameters influence the preconcentration of Cd2+ ions such as sample pH, TSIL volume, amount of KPF6, non-ionic surfactant and salt concentration were investigated. Under the optimal conditions, calibration curve was linear in the range of 5–250 µg L?1 Cd2+ with correlation coefficient of 0.9975 and a detection limit of 0.55 µg L?1. The relative standard deviation for six replicate measurements of 50 µg L?1 Cd2+ was 1.5%. The method was successfully applied for the extraction and determination of Cd2+ ions in water and food samples.  相似文献   

7.
The (liquid + liquid) equilibrium data (LLE) for the extraction of toluene from heptane with different ionic liquids (ILs) based on the alkylsulfate anion (R-SO4) was determined at T = 313.2 K and atmospheric pressure. The effect of more complex R-SO4 anions on capacity of extraction and selectivity in the liquid–liquid extraction of toluene from heptane was studied. The ternary systems were formed by {heptane + toluene + 1,3-dimethylimidazolium methylsulfate ([mmim][CH3SO4]), 1-ethyl-3-methylimidazolium hydrogensulfate ([emim][HSO4]), 1-ethyl-3-methylimidazolium methylsulfate ([emim][CH3SO4]), or 1-ethyl-3-methylimidazolium ethylsulfate ([emim][C2H5SO4])}. The degree of quality of the experimental LLE data was ascertained by applying the Othmer–Tobias correlation. The phase diagrams for the ternary systems were plotted, and the tie lines correlated with the NRTL model compare satisfactorily with the experimental data.  相似文献   

8.
Extraction and determination of estrogens in water samples were performed using alcoholic-assisted dispersive liquid–liquid microextraction (AA-DLLME) and high-performance liquid chromatography (UV/Vis detection). A Plackett–Burman design and a central composite design were applied to evaluate the AA-DLLME procedure. The effect of six parameters on extraction efficiency was investigated. The factors studied were volume of extraction and dispersive solvents, extraction time, pH, amount of salt and agitation rate. According to Plackett–Burman design results, the effective parameters were volume of extraction solvent and pH. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 220 μL 1-octanol as extraction solvent, 700 μL ethanol as dispersive solvent, pH 6 and 200 μL sample volume. Linearity was observed in the range of 1–500 μg L?1 for E2 and 0.1–100 μg L?1 for E1. Limits of detection were 0.1 μg L?1 for E2 and 0.01 μg L?1 for E1. The enrichment factors and extraction recoveries were 42.2, 46.4 and 80.4, 86.7, respectively. The relative standard deviations for determination of estrogens in water were in the range of 3.9–7.2 % (n = 3). The developed method was successfully applied for the determination of estrogens in environmental water samples.  相似文献   

9.
Dispersive liquid–liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.  相似文献   

10.
A new separation procedure for determination of palladium using dispersive liquid–liquid microextraction with dicyclohexano-18-crown-6 as complexing reagent was developed. In this method, potassium–dicyclohexano-18-crown-6 was used as a hydrophobic complex for the microextraction of palladium as PdCl4 2? complex ion. The main factors affecting DLLME efficiency, such as type and volume of extractant and disperser solvent, concentration of chelating reagent, concentration of KCl and pH were optimized. Under the optimal conditions, the limit of detection for palladium was 16.0 ng mL?1 with enrichment factor of 138. The present method was applied to the determination of palladium in water samples with satisfactory analytical results. The method was simple, rapid, cost efficient and sensitive for the extraction and preconcentration of palladium.  相似文献   

11.
A new micro-extraction technique named low-density magnetofluid dispersive liquid–liquid microextraction (LMF-DMMLE) has been developed, which permits a wider range of solvents and can be combined with various detection methods. Comparing with the existing low density solvents micro-extraction methods, no special devices and complicated operations were required during the whole extraction process. Dispersion of the low-density magnetofluid into the aqueous sample is achieved by using vortex mixing, so disperser solvent was unnecessary. The extraction solvent was collected conveniently with an external magnetic field placed outside the extraction container after dispersing. Then, the magnetic nanoparticles were easily removed by adding precipitation reagent under the magnetic field. In order to evaluate the validity of this method, ten organochlorine pesticides (OCPs) were chosen as the analytes. Parameters influencing the extraction efficiency such as extraction solvents, volume of extraction solvents, extraction time, and ionic strength were investigated and optimized. Under the optimized conditions, this method showed high extraction efficiency with low limits of detection of 1.8–8.4 ng L−1, good linearity in the range of 0.05–10.00 μg L−1 and the precisions were in the range of 1.3–9.6% (RSD, n = 5). Finally, this method was successfully applied in the determination of OCPs in real water samples.  相似文献   

12.
A simple ultrasound-assisted dispersive liquid–liquid microextraction method combined with liquid chromatography was developed for the preconcentration and determination of six pyrethroids in river water samples. The procedure was based on a ternary solvent system to formatting tiny droplets of extractant in sample solution by dissolving appropriate amounts of water-immiscible extractant (tetrachloromethane) in watermiscible dispersive solvent (acetone). Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvent, extraction time, ultrasonic time, and centrifuging time) were evaluated. Under the optimum condition, good linearity was obtained in a range of 0.00059–1.52 mg L−1 for all analytes with the correlation coefficient (r2) > 0.999. Intra-assay and inter-assay precision evaluated as the relative standard deviation (RSD) were less than 3.4 and 8.9%. The recoveries of six pyrethroids at three spiked levels were in the range of 86.2–109.3% with RSD of less than 8.7%. The enrichment factors for the six pyrethroids were ranged from 767 to 1033 folds.  相似文献   

13.
In the present work a new, simple, rapid and environmentally friendly dispersive liquid–liquid microextraction (DLLME) method has been developed for extraction/preconcentration of some triazole pesticides in aqueous samples and in grape juice. The extract was analyzed with gas chromatography–flame ionization detection (GC–FID) or gas chromatography–mass spectrometry (GC–MS). The DLLME method was performed in a narrow-bore tube containing aqueous sample. Acetonitrile and a mixture of n-hexanol and n-hexane (75:25, v/v) were used as disperser and extraction solvents, respectively. The effect of several factors that influence performance of the method, including the chemical nature and volume of the disperser and extraction solvents, number of extraction, pH and salt addition, were investigated and optimized. Figures of merit such as linearity (r2 > 0.995), enrichment factors (EFs) (263–380), limits of detection (0.3–5 μg L?1) and quantification (0.9–16.7 μg L?1), and relative standard deviations (3.2–5%) of the proposed method were satisfactory for determination of the model analytes. The method was successfully applied for determination of target pesticides in grape juice and good recoveries (74–99%) were achieved for spiked samples. As compared with the conventional DLLME, the proposed DLLME method showed higher EFs and less environmental hazards with no need for centrifuging.  相似文献   

14.
A sensitive and solvent-free method for the determination of ten polycyclic aromatic hydrocarbons, namely, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene and chrysene, with up to four aromatic rings, in milk samples using headspace solid-phase microextraction and gas chromatography–mass spectrometry detection has been developed. A polydimethylsiloxane–divinylbenzene fiber was chosen and used at 75°C for 60 min. Detection limits ranging from 0.2 to 5 ng L−1 were attained at a signal-to-noise ratio of 3, depending on the compound and the milk sample under analysis. The proposed method was applied to ten different milk samples and the presence of six of the analytes studied in a skimmed milk with vegetal fiber sample was confirmed. The reliability of the procedure was verified by analyzing two different certified reference materials and by recovery studies. Figure Milk is safe, healthy food  相似文献   

15.
A novel technique called miniaturized homogeneous liquid–liquid extraction (MHLLE) followed by high performance liquid chromatographic-fluorescence detection (HPLC-FL) was developed for the extraction and determination of some polycyclic aromatic hydrocarbons (PAHs) as model for analytical problem in sediment samples. The method is based on the rapid extraction of PAHs from a methanolic sample solution into 0.5 mL n-hexane, as a solvent of lower density than water. After addition of water, the extracting solvent immediately forms a distinct water-immiscible phase at the top of the vial, which can be easily separated, evaporated and re-dissolved in 25 μL of methanol and injected to the HPLC instrument. The parameters affecting the extraction process such as type and volume of organic extraction solvent, extraction time, and salt addition were investigated and the partition coefficient between methanol/water–n-hexane phases was evaluated and used to predict the extraction efficiency. Under optimal conditions, the limits of detection were estimated for the individual PAHs as 3Sb (three times of the standard deviation of baseline) of the measured chromatogram, are in the range of 0.003–0.04 ng g−1 for sediment samples. The relative recoveries of PAHs at spiking levels of 1.0 ng g−1 for sediment samples were in the range of 81–92%. The method was also applied to a corresponding standard references materials (IAEA-408) successfully. The proposed method is very fast, simple, and sensitive without any need for stirring and centrifugation.  相似文献   

16.
Fine and ultrafine particles are probably responsible for numerous health effects, but it is still unclear whether and to what extent the particle itself or organic compounds adsorbed or condensed on the particle are responsible for the effects observed. One important class of particle-bound substances are the polycyclic aromatic hydrocarbons (PAH) and their oxygenated derivatives. To improve the tools used for chemical characterization of particulate matter analytical methods for the determination of PAH and oxygenated PAH in aerosol samples of different origin have been developed and optimized. PAH on high-volume filters and on soot aerosols were analyzed by using accelerated solvent extraction for extraction and high-performance liquid chromatography with fluorescence detection for separation and quantification. Total PAH concentrations were in the range 0.3–9.3 ng m–3. For analysis of selected oxygenated PAH on high-volume filters a liquid chromatography–tandem mass spectrometric method was developed and optimized. Preliminary investigations showed that oxygenated PAH at pg m–3 concentrations can be determined.  相似文献   

17.
A novel microextraction method is introduced based on dispersive liquid–liquid microextraction (DLLME) in which an in situ metathesis reaction forms a water-immiscible ionic liquid (IL) that preconcentrates aromatic compounds from water followed by separation using high-performance liquid chromatography. The simultaneous extraction and metathesis reaction forming the IL-based extraction phase greatly decreases the extraction time as well as provides higher enrichment factors compared to traditional IL DLLME and direct immersion single-drop microextraction methods. The effects of various experimental parameters including type of extraction solvent, extraction and centrifugation times, volume of the sample solution, extraction IL and exchanging reagent, and addition of organic solvent and salt were investigated and optimized for the extraction of 13 aromatic compounds. The limits of detection for seven polycyclic aromatic hydrocarbons varied from 0.02 to 0.3 μg L−1. The method reproducibility produced relative standard deviation values ranging from 3.7% to 6.9%. Four real water samples including tap water, well water, creek water, and river water were analyzed and yielded recoveries ranging from 84% to 115%.   相似文献   

18.
Dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction and preconcentration of diethofencarb (DF) and pyrimethanil (PM) in environmental water. In the method, a suitable mixture of extraction solvent (50 µL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) are injected into the aqueous samples (5.00 mL) and the cloudy solution is observed. After centrifugation, the enriched analytes in the sediment phase were determined by HPLC-VWD. Different influencing factors, such as the kind and volume of extraction and dispersive solvent, extraction time and salt effect were investigated. Under the optimum conditions, the enrichment factors for DF and PM were both 108 and the limit of detection were 0.021 ng mL?1 and 0.015 ng mL?1, respectively. The linear ranges were 0.08–400 ng mL?1 for DF and 0.04–200 ng mL?1 for PM. The relative standard deviation (RSDs) were both almost at 6.0% (n = 6). The relative recoveries from samples of environmental water were from the range of 87.0 to 107.2%. Compared with other methods, DLLME is a very simple, rapid, sensitive (low limit of detection) and economical (only 5 mL volume of sample) method.  相似文献   

19.
A simple and cost effective sample pre-treatment method, dispersive liquid–liquid microextraction (DLLME), has been developed for the extraction of six fluoroquinolones (FQs) from chicken liver samples. Clean DLLME extracts were analyzed for fluoroquinolones using liquid chromatography with diode array detection (LC-DAD). Parameters such as type and volume of disperser solvent, type and volume of extraction solvent, concentration and composition of phosphoric acid in the disperser solvent and pH were optimized. Linearity in the concentration range of 30–500 μg kg−1 was obtained with regression coefficients ranging from 0.9945 to 0.9974. Intra-day repeatability expressed as % RSD was between 4 and 7%. The recoveries determined in spiked blank chicken livers at three concentration levels (i.e. 50, 100 and 300 μg kg−1) ranged from 83 to 102%. LODs were between 5 and 19 μg kg−1 while LOQs ranged between 23 and 62 μg kg−1. All of the eight chicken liver samples obtained from the local supermarkets were found to contain at least one type of fluoroquinolone with enrofloxacin being the most commonly detected. Only one sample had four fluoroquinolone antibiotics (ciprofloxacin, difloxacin, enrofloxacin, norfloxacin). Norfloxacin which is unlicensed for use in South Africa was also detected in three of the eight chicken liver samples analyzed. The concentration levels of all FQs antibiotics in eight samples ranged from 8.8 to 35.3 μg kg−1, values which are lower than the South African stipulated maximum residue limits (MRL).  相似文献   

20.
In the present study, a rapid, highly efficient and environmentally friendly sample preparation method named ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-USA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and preconcentration of four benzophenone-type ultraviolet (UV) filters (viz. benzophenone (BP), 2-hydroxy-4-methoxybenzophenone (BP-3), ethylhexyl salicylate (EHS) and homosalate (HMS)) from three different water matrices. The procedure was based on a ternary solvent system containing tiny droplets of ionic liquid (IL) in the sample solution formed by dissolving an appropriate amount of the IL extraction solvent 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM][FAP]) in a small amount of water-miscible dispersive solvent (methanol). An ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution, which markedly increased the extraction efficiency and reduced the equilibrium time. Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvents, ionic strength, pH and extraction time) were evaluated. Under optimal conditions, the proposed method provided good enrichment factors in the range of 354–464, and good repeatability of the extractions (RSDs below 6.3%, n = 5). The limits of detection were in the range of 0.2–5.0 ng mL−1, depending on the analytes. The linearities were between 1 and 500 ng mL−1 for BP, 5 and 500 ng mL−1 for BP-3 and HMS and 10 and 500 ng mL−1 for EHS. Finally, the proposed method was successfully applied to the determination of UV filters in river, swimming pool and tap water samples and acceptable relative recoveries over the range of 71.0–118.0% were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号